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A Motivating Example

Fitting regression models:
Dataset: D = {x, y},
x ∼ N (0,1),
h = 0.001(x3

1 + x1) + x2 + sin(x3),
y = h + 0.005ε, ε ∼ N (0, 1)

Goal: find f (θ) ∈ H such that

y ≈ f (x;θ) 4 2 0 2 4
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A Motivating Example

Fitting regression models:
Dataset: D = {x, y},
x ∼ N (0,1),
h = 0.001(x3

1 + x1) + x2 + sin(x3),
y = h + 0.005ε, ε ∼ N (0, 1)

Goal: find f (θ) ∈ H such that

y ≈ f (x;θ)

Training:

L = ‖MLP(x;θ)− y‖2
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A Motivating Example

Fitting regression models:
Dataset: D = {x, y},
x ∼ N (0,1),
h = 0.001(x3

1 + x1) + x2 + sin(x3),
y = h + 0.005ε, ε ∼ N (0, 1)

Goal: find f (θ) ∈ H such that

y ≈ f (x;θ)

Training:

L = ‖MLP(x;θ)− y‖2

s.t. MLP(x;θ) is monotonic w.r .t. x1
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Real Life Applications

Interpretable Machine Learning
Artificial Intelligent Fairness
Deontological Ethics

Monotonicity shape constraint

f (x, z1) ≤ f (x, z2), ∀x, z1 < z2,

where x and z represent the LSAT and GPA score, respectively.
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Monotonically Constrained Neural Network

Game plan: learn a monotonic function F(x;ψ) : R → R

Imposing its derivative f (x;ψ) =: ∂F(x;ψ)
∂x > 0;

The monotonic function F(x;ψ) can be parameterized as

F(x;ψ) =
∫ x

0
f (t;ψ)dt + F(0;ψ),

where f (t;ψ) : R → R+ is parameterized by neural networks.
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Monotonically Constrained Neural Network

Game plan: learn a monotonic function F(x;ψ) : R → R

The monotonic function F(x;ψ) can be parameterized as

F(x;ψ) =
∫ x

0
f (t;ψ)dt + F(0;ψ), where f (t;ψ) : R → R+.

The derivative of F(x;ψ) w.r.t. ψ is

∇ψF(x;ψ) = f (t;ψ)∇ψt|t=x
t=0 +

∫ x

0
∇ψf (t;ψ)dt +∇ψF(0;ψ)

=

∫ x

0
∇ψf (t;ψ)dt +∇ψF(0;ψ),

∇xF(x;ψ) = f (x;ψ).
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Monotonically Constrained Neural Network

The computation of
∫ x
0 f (t;ψ)dt and

∫ x
0 ∇ψf (t;ψ)dt:

Trapezoid quadrature

More advanced numerical integration methods can be used (e.g.,
Clenshaw-Curtis quadrature).
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Monotonic Flow Based Models
Application Beyond Regression

Flow based models as density estimation

samples x : Rd ;

latent variables z : Rd ;

bijective mapping z = g(x;θ) : Rd → Rd .

According to the change of variables theorem

log p(x) = log pz(g(x;θ)) + log
∣∣∣∣∂g(x;θ)

∂x

∣∣∣∣
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Monotonic Flow Based Models

Flow based models

log p(x) = log pz(g(x;θ)) + log
∣∣∣∣∂g(x;θ)

∂x

∣∣∣∣ .
Notice that two constraints should be satisfied

The mapping function z = log pz(g(x;θ) is invertible;

The determinant of Jacobian matrix
∣∣∣∂g(x;θ)

∂x

∣∣∣ is tractable.

The monotonically constrained neural networks satisfy these two
conditions naturally.
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Monotonic Flow Based Models

Consider autoregressive models

p(x;θ) = p(x1;θ)
d−1∏
i=1

p(xi+1|x1:i ;θ).

Apply flow based transformation for each component

log p(xi |x1:i−1;θ) = log pz(g(x1:i ;θ)) + log
∣∣∣∣∂g(x1:i ;θ)

∂xi

∣∣∣∣ .
Instantiate g(x1:i ;θ) as monotonically constrained neural networks

g(x1:i ;θ) =

∫ xi

0
f (t|x1:i−1;θ)dt + g(0|x1:i−1;θ),

∇xi g(x1:i ;θ) = f (xi |x1:i−1;θ).
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Monotonic Flow Based Models

Monotonic Flow Based Models

log p(x;θ) = log pz(g(x;θ)) +
d∑

i=1

log f (xi |x1:i−1;θ),

where pz(z) = N (z;0,1).

Training. At each minibatch of samples from x ∼ PoPX
1. Take transfomation to obtain zθ = g(x;θ).

2. Maximize log pz(zθ) +
d∑

i=1

log f (xi|x1:i−1;θ) w.r.t. θ.

Inference. Given a noisy variable z ∼ N (z;0,1), compute

x = g−1(z;θ).
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Monotonic Flow Based Models
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Shape Constrains Beyond Monotonicity

Dominance: feature A is more important that feature B
Recent data vs older data in time series models
Buys vs views on webstores
A bird in hand vs two birds in the bush

Complements: feature A and feature B are complements
Guns and ammo
Vaccine doses and nurses
Cashiers and cash registers
CTR (click-through-rate) and # of impressions
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Shape Constrains Beyond Monotonicity
Dominance

f (x) : RD → R
x[d] ∈ [ld , ud ]

Ld(x) = x − ed � x + lded

Ud(x) = x − ed � x + uded

Monotonic Dominance:
∂f (x)
∂x[a] ≥

∂f (x)
∂x[b] ≥ 0

Range Dominance:
∂f (x)
∂x[a]

≥ 0,
∂f (x)
∂x[b]

≥ 0

f (Ua[x])− f (La[x]) ≥ f (Ub[x])− f (Lb[x])
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Shape Constrains Beyond Monotonicity
Complements

Edgeworth:
∂

∂x[b]

(
∂f (x)
∂x[a]

)
≥ 0

f (x) is edgeworth ; g(f (x)) is edgeworth.
Trapezoid:

∂f (x)
∂x[a] ≥0

∂f (La(x))
∂x[b] ≤ 0,

∂f (Ua(x))
∂x[b] ≥ 0

f (x) is trapezoid ⇒ g(f (x)) is trapezoid, if g(·) is monotonic.
Joint Monotonicity:

∂f (x)
∂x[a] +

∂f (x)
∂x[b] ≥ 0
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Shape Constrains Beyond Monotonicity
Increasing Concave Neural Networks

Game plan: learn an increasing concave function F(x;ψ) : R → R

Imposing its 2nd derivative ∂2F(x;ψ)
∂x2 := −f (x;ψ) ≤ 0;

The increasing concave function F(x;ψ) can be parameterized as

F(x;ψ) =
∫ a=x

a=0

∫ b=∞

b=a
f (b;ψ)dbda,

where f (b;ψ) : R → R+ is parameterized by neural networks.
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Shape Constrains Beyond Monotonicity
Increasing Concave Neural Networks

Game plan: learn a increasing concave function F(x;ψ) : R → R

The monotonic function F(x;ψ) can be parameterized as

F(x;ψ) =
∫ a=x

a=0

∫ b=∞

b=a
f (b;ψ)dbda, where f (b;ψ) : R → R+.

The derivative of F(x;ψ) w.r.t. ψ and x is

∇ψF(x;ψ) =
∫ a=x

a=0

∫ b=∞

b=a
∇ψf (b;ψ)dbda,

∇xF(x;ψ) =
∫ b=∞

b=x
f (b;ψ)db > 0,

∇2
xF(x;ψ) = −f (x;ψ).
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Shape Constrains Beyond Monotonicity
General Concave Neural Networks

Game plan: learn a general form of concave function F(x;ψ) : R → R

The sign of the 2nd derivative ∂2F(x;ψ)
∂x2 is unknown;

The general form of concave function F(x;ψ) can be
parameterized as

F(x;ψ) =
∫ a=x

a=0

∫ b=∞

b=a
f +(b;ψ)dbda +

∫ a=x

a=0

∫ b=a

b=0
f −(b;ψ)dbda,

where f +(b;ψ) : R → R+ and f −(b;ψ) : R → R− are parameterized
by neural networks.

Zijing Ou Shape Constraints on Neural Networks 19 / 22



Shape Constrains Beyond Monotonicity
General Concave Neural Networks

Game plan: learn a increasing concave function F(x;ψ) : R → R

The general concave function F(x;ψ) can be parameterized as

F(x;ψ) =
∫ a=x

a=0

∫ b=∞

b=a
f +(b;ψ)dbda +

∫ a=x

a=0

∫ b=a

b=0
f −(b;ψ)dbda.

The derivative of F(x;ψ) w.r.t. ψ and x is

∇ψF(x;ψ) =
∫ a=x

a=0

∫ b=∞

b=a
∇ψf +(b;ψ)dbda+

∫ a=x

a=0

∫ b=a

b=0
∇ψf −(b;ψ)dbda,

∇xF(x;ψ) =
∫ b=∞

b=x
f +(b;ψ)db +

∫ b=x

b=0
f −(b;ψ)db,

∇2
xF(x;ψ) = −f +(x;ψ) + f −(b;ψ) < 0.
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Shape Constrains Beyond Monotonicity1

D = {x, y}, x ∼ N (0,1), y = f (x)
monotonic: f (x) = 0.001(x3

1 + x1) + x2 + sin(x3)
increasing concave: f (x) = 0.001(−e−x1 + x1) + x2 + sin(x3)

general concave: f (x) = 0.001(−x2
1 + x1) + x2 + sin(x3)
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1code available: https://github.com/J-zin/shape-constraints-on-neural-network
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