Training Energy-Based Models with Energy Discrepancies

Zijing Ou Imperial College London

18/10/2023

Hello

- Second year PhD at Imperial College London
- I work on a wide variety of topics in ML/Probabilistic Inference:
 - ☐ Energy-based modelling
 - ☐ Explainability
 - ☐ Representation Learning
 - ☐ Generative Models
 - **...**
- Today, I gonna talk about my recent research on training EBMs

Energy-based Models

$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp[-E(x; \theta)]$$

normalising constant / partition function

$$Z(\theta) = \int \exp[-E(x;\theta)]dx$$

Energy-based Models

$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp[-E(x; \theta)]$$

normalising constant / partition function

$$Z(\theta) = \int \exp[-E(x;\theta)]dx$$

Examples: Gaussian (continuous)

$$E(x;\theta) = \frac{1}{2\sigma^2} (x - \mu)^2$$

$$\triangleright \theta = \{\mu, \sigma^2\}$$

$$\geq Z(\theta) = \sqrt{2\pi\sigma^2}$$

$$\succ x \in \mathbb{R}^{D_x}$$

Energy-based Models

energy function

$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp[-E(x; \theta)]$$

normalising constant / partition function

$$Z(\theta) = \int \exp[-E(x;\theta)]dx$$

Examples: Restricted Boltzmann Machine (discrete)

$$\triangleright -E(x;\theta) = b_x^T x + b_h^T h + x^T W h$$

$$\triangleright \theta = \{b_x^T, b_h^T, W\}$$

$$\geq Z = \sum_{x,h} \exp[b_x^T x + b_h^T h + x^T W h]$$

$$\succ x \in \{0,1\}^{D_X}, h \in \{0,1\}^{D_h}$$

Maximum Likelihood Estimation of θ :

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{p_{data}(x)} [-E(x; \theta) - \log Z(\theta)]$$

$$-\nabla_{\theta} E_{p_{data}(x)}[\log p_{\theta}(x)] = \mathbb{E}_{p_{data}(x)}[\nabla_{\theta} E(x;\theta)] - \mathbb{E}_{p_{\theta}(x)}[\nabla_{\theta} E(x;\theta)]$$

decrease energy around data

increase energy around samples

Maximum Likelihood Estimation of θ :

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{p_{data}(x)} [-E(x; \theta) - \log Z(\theta)]$$

$$-\nabla_{\theta} E_{p_{data}(x)}[\log p_{\theta}(x)] = \mathbb{E}_{p_{data}(x)}[\nabla_{\theta} E(x;\theta)] - \mathbb{E}_{p_{\theta}(x)}[\nabla_{\theta} E(x;\theta)]$$

decrease energy around data

increase energy around samples

Examples: Restricted Boltzmann Machine

$$\triangleright -E(x;\theta) = b_x^T x + b_h^T h + x^T W h$$

$$\triangleright -\nabla_{\theta} E_{p_{data}(x)}[\log p_{\theta}(x)] =$$

$$E_{p_{data}(x)p_{\theta}(h|x)}[\nabla_{\theta}E(x,h;\theta)] - E_{p_{\theta}(x,h)}[\nabla_{\theta}E(x,h;\theta)]$$

sample h conditioned on data

simulate $h, x \sim p_{\theta}(x, h)$

Maximum Likelihood Estimation of θ :

$$-\nabla_{\theta} \mathbb{E}_{p_{data}(x)}[\log p_{\theta}(x)] = \mathbb{E}_{p_{data}(x)}[\nabla_{\theta} E(x;\theta)] - \mathbb{E}_{p_{\theta}(x)}[\nabla_{\theta} E(x;\theta)]$$

Simulate $x \sim p_{\theta}(x)$ with Langevin dynamics

$$x_{t+1} = x_t - \eta \nabla_x E(x; \theta) + \sqrt{2\eta} \epsilon, \qquad \epsilon \sim N(0, I)$$

$$\eta \to 0$$
, $x_{t\to\infty} \sim p_{\theta}(x)$

Maximum Likelihood Estimation of θ :

$$-\nabla_{\theta} \mathbb{E}_{p_{data}(x)}[\log p_{\theta}(x)] = \mathbb{E}_{p_{data}(x)}[\nabla_{\theta} E(x;\theta)] - \mathbb{E}_{p_{\theta}(x)}[\nabla_{\theta} E(x;\theta)]$$

Simulate $x \sim p_{\theta}(x)$ with Langevin dynamics

$$x_{t+1} = x_t - \eta \nabla_x E(x; \theta) + \sqrt{2\eta} \epsilon, \qquad \epsilon \sim N(0, I)$$

$$\eta \to 0, x_{t \to \infty} \sim p_{\theta}(x)$$

Simulating MCMC is time-consuming!!!

Minimising Fisher Divergence:

$$FD(p_{data}, p_{\theta}) = \mathbb{E}_{p_{data}(x)} [\|\nabla_{x} \log p_{data}(x) - \nabla_{x} \log p_{\theta}(x)\|^{2}]$$
Intractable term

This leads to the score-matching loss:

$$SM(p_{data}, p_{\theta}) = \mathbb{E}_{p_{data}(x)} \left[\frac{1}{2} \| \nabla_{x} E_{\theta}(x) \|^{2} - Tr(\nabla_{x}^{2} E_{\theta}(x)) \right]$$
Hessian matrix

Minimising Fisher Divergence:

$$FD(p_{data}, p_{\theta}) = \mathbb{E}_{p_{data}(x)} [\|\nabla_{x} \log p_{data}(x) - \nabla_{x} \log p_{\theta}(x)\|^{2}]$$
Intractable term

This leads to the score-matching loss:

$$SM(p_{data}, p_{\theta}) = \mathbb{E}_{p_{data}(x)} \left[\frac{1}{2} \| \nabla_{x} E_{\theta}(x) \|^{2} - Tr(\nabla_{x}^{2} E_{\theta}(x)) \right]$$
Hessian matrix

MCMC-free, BUT require Second-Order Computation

In This Work

We propose Energy Discrepancy, a score-independent loss for training EBMs

Given the **contrastive potential** induced by conditional density q(y|x) as

$$U_q(y) := -\log \sum_{x \in \mathcal{X}} q(y|x) \exp(-U(x))$$

We define the **energy discrepancy** between p_{data} and U induced by q as

$$ED_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{data}(x)}\mathbb{E}_{q(y|x)}[U_q(y)]$$

In This Work

We propose Energy Discrepancy, a score-independent loss for training EBMs

Given the **contrastive potential** induced by conditional density q(y|x) as

$$U_q(y) := -\log \sum_{x \in \mathcal{X}} q(y|x) \exp(-U(x))$$

We define the **energy discrepancy** between p_{data} and U induced by q as

$$ED_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{data}(x)}\mathbb{E}_{q(y|x)}[U_q(y)]$$

Non-Parametric Estimation Results

$$U^* := \underset{U}{\operatorname{argmin}} ED_q(p_{data}, U) \Rightarrow p_{data}(x) \propto \exp(-U^*(x))$$

Connection to the **KL-Contraction Divergence**

Denote the convolution operator as

$$Qp(y) \coloneqq \sum_{x \in \mathcal{X}} q(y|x)p(x)$$

The KL-Contraction Divergence constructs a valid objective

$$KLC_Q(p_1,p_2) = KL(p_1\|p_2) - KL(Qp_1\|Qp_2)$$

$$KLC_Q(p_1,p_2) \ge 0 \text{ and } = 0 \text{ iff } p_1 = p_2, a.e.$$

Connection to the **KL-Contraction Divergence**

Denote the convolution operator as

$$Qp(y) \coloneqq \sum_{x \in \mathcal{X}} q(y|x)p(x)$$

The KL-Contraction Divergence constructs a valid objective

$$KLC_Q(p_1, p_2) = KL(p_1||p_2) - KL(Qp_1||Qp_2)$$

 $KLC_0(p_1, p_2) \ge 0$ and = 0 iff $p_1 = p_2, a.e.$

Connections to Energy Discrepancy

$$\underset{U}{\operatorname{argmin}} \, ED_q(p_{data}, U) \quad \Leftrightarrow \quad \underset{U}{\operatorname{argmin}} \, KLC_Q(p_{data}, p_{ebm}), \, p_{ebm} \propto \exp(-U)$$

Connection to the Maximum Recovery Likelihood

Denote the posterior $p_{ebm}(x|y)$ as

$$p_{ebm}(x|y) \propto \exp(-U(x))q(y|x)$$

The Maximum Recovery Likelihood constructs a valid objective

$$RL_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)} \mathbb{E}_{q(y|x)} [\log p_{ebm}(x|y)]$$

Connection to the Maximum Recovery Likelihood

Denote the posterior $p_{ebm}(x|y)$ as

$$p_{ebm}(x|y) \propto \exp(-U(x))q(y|x)$$

The Maximum Recovery Likelihood constructs a valid objective

$$RL_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)} \mathbb{E}_{q(y|x)}[\log p_{ebm}(x|y)]$$

Connections to Energy Discrepancy

$$\underset{U}{\operatorname{argmin}} ED_q(p_{data}, U) \quad \Leftrightarrow \quad \underset{U}{\operatorname{argmin}} -RL_q(p_{data}, U)$$

Connection to the **Contrastive Divergence**

Assume the conditional density q(y|x) satisfies the detailed balance

$$q(y|x) \exp(-U(x)) = q(x|y) \exp(-U(y))$$

The Contrastive Divergence constructs a valid objective

$$CD(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{ebm}(x)}[U(x)]$$

Connection to the **Contrastive Divergence**

Assume the conditional density q(y|x) satisfies the detailed balance

$$q(y|x) \exp(-U(x)) = q(x|y) \exp(-U(y))$$

The Contrastive Divergence constructs a valid objective

$$CD(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{ebm}(x)}[U(x)]$$

Connections to Energy Discrepancy

$$\underset{U}{\operatorname{argmin}} ED_q(p_{data}, U) \quad \Leftrightarrow \quad \underset{U}{\operatorname{argmin}} -CD(p_{data}, U)$$

Energy Discrepancy In Practice

$$ED_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{data}(x)}\mathbb{E}_{q(y|x)}[U_q(y)]$$

with the contrastive potential defined as

$$U_q(y) = -\log \sum_{x \in \mathcal{X}} q(y|x) \exp(-U(x))$$

Energy Discrepancy In Practice

$$ED_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{data}(x)}\mathbb{E}_{q(y|x)}[U_q(y)]$$

with the contrastive potential defined as

$$U_q(y) = -\log \sum_{x \in \mathcal{X}} q(y|x) \exp(-U(x))$$

Estimating U_q with Importance Sampling

$$U_q(y) = -\mathbb{E}_{\rho_y(x)} \left[\frac{q(y|x)}{\rho_y(x)} \exp(-U(x)) \right]$$

Energy Discrepancy In Practice

$$ED_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{data}(x)}\mathbb{E}_{q(y|x)}[U_q(y)]$$

with the contrastive potential defined as

$$U_q(y) = -\log \sum_{x \in \mathcal{X}} q(y|x) \exp(-U(x))$$

Estimating U_q with Importance Sampling

$$U_q(y) = -\mathbb{E}_{\rho_y(x)} \left[\frac{q(y|x)}{\rho_y(x)} \exp(-U(x)) \right]$$

A simple choice of $\rho_y(x)$ is an uninformed proposal

$$\rho_{y}(x) \coloneqq \frac{q(y|x)}{\sum_{x \in \mathcal{X}} q(y|x)}$$

 $\rho_{\nu}(x)$ is tractable for some perturbations, e.g., Gaussian, Bernoulli, etc.

Let q_t be the density involved by the diffusion process

$$dx_t = a(x_t)dt + dw_t$$

The energy discrepancy is given by a multi-noise score matching loss

$$ED_{q_t}(p_{data}, U) = \int_0^t \mathbb{E}_{p_s(x_s)} \left[\frac{1}{2} \left\| \nabla_{x_s} U_{q_s}(x_s) \right\|^2 - Tr(\nabla_x^2 U_{q_s}(x_s)) \right] ds + const$$

$$= SM(p_s, U_{q_s})$$

$$p_s(y) := \int q_s(y|x) p_{data}(x) dx, \exp\left(-U_{q_s}(y)\right) := \int q_s(y|x) \exp(-U(x)) dx$$

Let q_t be the density involved by the diffusion process

$$dx_t = a(x_t)dt + dw_t$$

The energy discrepancy is given by a multi-noise score matching loss

$$ED_{q_t}(p_{data}, U) = \int_0^t \mathbb{E}_{p_s(x_s)} \left[\frac{1}{2} \left\| \nabla_{x_s} U_{q_s}(x_s) \right\|^2 - Tr(\nabla_x^2 U_{q_s}(x_s)) \right] ds + const$$

$$= SM(p_s, U_{q_s})$$

$$p_s(y) := \int q_s(y|x) p_{data}(x) dx, \exp\left(-U_{q_s}(y)\right) := \int q_s(y|x) \exp(-U(x)) dx$$

If a=0, energy discrepancy converges to **maximum likelihood** if $t\to +\infty$

$$|ED_{q_t}(p_{data}, U) + \mathbb{E}_{p_{data}(x)}[\log p_{ebm}(x)] - c(t)| \le \frac{1}{2t} \mathbb{W}_2^2(p_{data}, p_{ebm})$$

 $\mathbb{W}(\cdot,\cdot)$ denotes the Wasserstein distance

Connections to score matching and maximum likelihood

$$p_{\rho}(x) = \rho g_1(x) + (1 - \rho)g_2(x)$$

Energy Discrepancy under different t

$$ED_{q_t}(p_{\rho=0.2}, \log p_{\rho})$$

Score Matching

$$\frac{1}{2} \mathbb{E}_{p_{\rho=0.2}(x)} [\|\nabla \log p_{\rho=0.2}(x) - \nabla \log p_{\rho}(x)\|^2]$$

Maximum Likelihood

$$\mathbb{E}_{p_{\rho=0.2}(x)}[-\log p_{\rho}(x)]$$

Learning laten EBMs

Attribute Manipulate

$$p_{\phi,\theta}(x) \propto \int p_{\phi}(x|z) \exp(-E_{\theta}(z)) dz$$

 $p_{\phi,\theta}(z|x) \propto p_{\phi}(x|z) \exp(-E_{\theta}(z))$

Unconditional Generation

$$U_q(y) := -\log \sum_{x \in \mathcal{X}} q(y|x) \exp(-U(x))$$

$$ED_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{data}(x)}\mathbb{E}_{q(y|x)}[U_q(y)]$$

Energy discrepancy is valid in discrete spaces $\mathcal{X} \in \{0,1\}^d$

We can define q(y|x) as Bernoulli perturbation

$$y = x + \xi \mod 2, \xi \sim Bernoulli(\epsilon)^d, \ \epsilon \in (0,1)$$

$$U_q(y) := -\log \sum_{x \in \mathcal{X}} q(y|x) \exp(-U(x))$$

$$ED_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{data}(x)}\mathbb{E}_{q(y|x)}[U_q(y)]$$

Energy discrepancy is valid in discrete spaces $\mathcal{X} \in \{0,1\}^d$

Applications: training Ising models

$$U_q(y) := -\log \sum_{x \in \mathcal{X}} q(y|x) \exp(-U(x))$$

$$ED_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{data}(x)}\mathbb{E}_{q(y|x)}[U_q(y)]$$

Energy discrepancy is valid in discrete spaces $\mathcal{X} \in \{0,1\}^d$

Applications: density estimation

$$U_q(y) := -\log \sum_{x \in \mathcal{X}} q(y|x) \exp(-U(x))$$

$$ED_q(p_{data}, U) = \mathbb{E}_{p_{data}(x)}[U(x)] - \mathbb{E}_{p_{data}(x)}\mathbb{E}_{q(y|x)}[U_q(y)]$$

Energy discrepancy is valid in discrete spaces $\mathcal{X} \in \{0,1\}^d$

Applications: ego-graph generation

Training Data

Generated Data

Thank you!

Questions? Ask now, or email:

z.ou22@imperial.ac.uk

Thanks to my awesome collaborators:

Tobias Schröder

Jen Ning Lim

Yingzhen Li

Sebastian Vollmer

Andrew Duncan