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In July this year, I gave a presentation of the energy-based models in our reading groups
(slides). In the talk, I proposed a simple method to enhance ratio matching [1] by introduc-
ing gradient relaxation [2]. The experimental results on learning Boltzmann Machine seem
quite good compared with original ratio matching. Recently, when I skimmed the submis-
sion papers on ICLR-2022, I found a paper, named GRADIENT-GUIDED IMPORTANCE
SAMPLING FOR LEARNING DISCRETE ENERGY-BASED MODELS [3], which applies
a similar method to reduce the time and space complexity of the ratio matching. Overall,
the idea is simple: instead of matching the ratio between data and all the flipped points, the
authors reformulate the objective of ratio matching into the perspective of expectation and
reduce its variance by using importance sampling. We briefly discuss this method as follows.

1 Ratio Matching

Hyvärinen [1] and Lyu [4] proposed to learn a discrete energy based model pθ = e−Eθ(x)/Z
with x ∈ {0, 1}d by matching the probabilistic ratio by minimizing the objective function

JRM(θ) = EpD(x)

d∑
i=1

[
pθ(x−i)

pθ(x)

]2
= EpD(x)

d∑
i=1

[
eEθ(x)−Eθ(x−i)

]2
. (1)

The intuition of this objective is pushing down the energy of the training sample x and
pushing up the energies of other noisy data points obtained by flipping one dimension of x.
However, (1) suffers from time complexity with O(d), which is inefficient in high dimensional
data. To address this issue, one can randomly sample several dimensions and reduce their
ratios heuristically, which derives the expectation perspective of ratio matching

JRM(θ,x) = d
d∑

i=1

1

d

[
eEθ(x)−Eθ(x−i)

]2
= dEm(x−i)

[
eEθ(x)−Eθ(x−i)

]2
, (2)

where m(x−i) = 1
d

for i = 1, . . . , d is a uniformed category distribution. So, one can estimate
(2) via Monte Carlo sampling

JRM

∧
≈ d

1

s

s∑
t=1

[
eEθ(x)−Eθ(x

(t)
−i)
]2
, x

(t)
−i ∼ m(x−i). (3)

Such a simple trick can reduce the complexity from O(d) to O(s), which is exactly efficient in
high dimensional data when s� d. However, it suffers from high variance due the uniform
sampling process. Next, we introduce importance sampling to alleviate this problem.
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2 Variance Reduction via Importance Sampling

Importance sampling is a widely used method to reduce variance in MC sampling. Instead of
sampling based on the original distribution m(x−i), importance sampling proposes to sample
from another proposal distribution n(x−i).

JRM(θ,x)n = dEm(x−i)

[
eEθ(x)−Eθ(x−i)

]2
= dEn(x−i)

m(x−i)
[
eEθ(x)−Eθ(x−i)

]2
n(x−i)

. (4)

Thereby, one can estimate (4) by

JRM(θ,x)n
∧

≈ d
1

s

s∑
t=1

m(x
(t)
−i)
[
eEθ(x)−Eθ(x

(t)
−i)
]2

n(x
(t)
−i)

, x
(t)
−i ∼ n(x−i). (5)

By selecting a proper proposal distribution n(x−i), one can reduce the variance of (5) by a
large amount. The optimal n∗(x−i), with zero variance (see appendix A), is given by

n∗(x−i) =
m(x−i)

[
eEθ(x)−Eθ(x−i)

]2∑d
i=1m(x−i) [eEθ(x)−Eθ(x−i)]

2 =

[
eEθ(x)−Eθ(x−i)

]2∑d
i=k [eEθ(x)−Eθ(x−k)]

2 . (6)

This proposal distribution is optimal, but not really usable in practice, because for each
sample x∗−i ∼ n∗(x−i), we have

m(x∗−i)
[
eEθ(x)−Eθ(x

∗
−i)
]2

n(x∗−i)
= m(x∗−i)

d∑
i=1

[
eEθ(x)−Eθ(x−i)

]2
, (7)

which is the sum over all flips with complexity of O(d). However, this problem can be
sidestepped by the application of gradient relaxation trick proposed in [2]. Specifically, it
can be shown that the computation complexity of n∗(x−i) can be reduced to O(1) via Taylor
expansion.

3 Gradient Guided Importance Sampling

It is observed by Grathwohl et al. [2] that many discrete distributions are implemented as
continuous differentiable functions, although they are evaluated only in discrete domains.
Under this assumption, we can apply Taylor expansion on Eθ(x)

Eθ(x) ≈ Eθ(x−i) + (x− x−i)T∇xEθ(x). (8)

Note that we have [x]i − [x−i]i = −1 if [x]i = 0 and [x]i − [x−i]i = 1 if [x]i = 1, which can
be unified as [x]i − [x−i]i = 2[x]i − 1. Thus we have

Eθ(x)− Eθ(x−i) = [(2x− 1)�∇xEθ(x)]i, i = 1, . . . , d, (9)
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where � denotes element-wise multiplication. Therefore, we can approximate n∗(x−i) with
O(1) complexity

ñ∗(x−i) =

[
e2(2x−1)�∇xEθ(x)

]
i∑d

k=1 [e2(2x−1)�∇xEθ(x)]k
. (10)

Thus, we can train the discrete energy based model by minimizing the following objective

JRM(θ,x)ñ∗
∧

≈ d
1

s

s∑
t=1

m(x
(t)
−i)
[
eEθ(x)−Eθ(x

(t)
−i)
]2

ñ∗(x
(t)
−i)

, x
(t)
−i ∼ ñ∗(x−i), (11)

which complexity is O(s), and this is the final objective proposed in [3].

4 My Notes

The training process can be concluded as following steps: i) sampling the flipping index

n∗(x−i) ∝
[
eEθ(x)−Eθ(x−i)

]2 ≈ [e2(2x−1)�∇xEθ(x)]
i
, which is with a higher probability of in-

terest on the flipped dimension that enjoys lower energy; and ii) simultaneously pushing
down the energy of the data point and pushing up the energy of flipped data by minimiz-

ing
[
eEθ(x)−Eθ(x

(t)
−i)
]2

w.r.t. θ. Overall, the intuition behind this method is quite simple,

and similar to the adversarial training: instead of minimizing the energy of all flipped data
points, we only need to find the worst case, which has the comparatively lower energy, and
push up its energy.

Another quite interesting thing is that, generally, the optimal proposal distribution (6)
is not usable in practice, because the partition function of n∗(x−i) is intractable, as shown
in (7). So this zero-variance importance sampling densities just provides insight into the
design of a good importance sampling scheme, but not usable in practice. However, with
the guidance of gradient, the optimal proposal distribution is magically practical, since we
can estimate the partition function efficiently, as shown in (10). I do believe this trick has a
lot of potentials to be used in a wide range of applications.

Besides, I find that we can directly apply the same trick on (1), that is

JRM(θ,x) =
d∑

i=1

[
eEθ(x)−Eθ(x−i)

]2 ≈ d∑
i=1

[
e2(2x−1)�∇xEθ(x)

]
i

=
∥∥e(2x−1)�∇xEθ(x)∥∥2

2
. (12)

Recall the objective of score matching

JSM(θ,x) =
1

2
‖∇xEθ(x)‖22 + tr(∇2

xEθ(x)). (13)

It can be seen that (12) is the score function scaled by exponential. There may exit some
connections between these two objectives. Although (12) is heuristic, maybe it is useful in
practice. I am very curious to know more techniques about a potential shortcut to train
discrete energy based models, but it is rarely explored by recent literature. So I am quite
excited to see that such a simple method proposed by Anonymous [3] works well in their
experiments. I will try to reproduce their experimental results in my spare time1.

1Code is available now: https://github.com/J-zin/RMwGGIS
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5 Experimental Reproduction

We reproduce the experiment on synthetic discrete data. The experimental setup follows
that in [3], and the results seem quite good.

Figure 1: Visualization of learned energy functions on 32-dimensional synthetic discrete
datasets. From the first row to the last: training data, RMwGGIS (biased), and RMwGGIS
(unbiased).
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A The Optimal Proposal Distribution

The importance sampling estimate of µ = Ep[f(x)] is

µ̂q =
1

n

n∑
i=1

f(xi)p(xi)

q(xi)
, xi ∼ q(x).
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Theorem 1. When the proposal distribution q(x) is given by

q(x) =
p(x)f(x)∫
p(x)f(x)dx

,

then we have V ar(µ̂q) = 0.

Proof.

V ar(µ̂q) =
1

n
V ar

(
f(x)p(x)

q(x)

)
=

1

n

{
Eq(x)

[
f(x)p(x)

q(x)

]2
−
[
Eq(x)

f(x)p(x)

q(x)

]2}

=
1

n

{∫
f 2(x)p2(x)

q(x)
dx−

[
Ep(x)f(x)

]2}
=

1

n

{[
Ep(x)f(x)

]2 − [Ep(x)f(x)
]2}

= 0.

This completes the proof of Theorem 1.
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