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Abstract

Knowledge graph is a set of triplets, i.e., (head,
relation, tail), that plays a crucial role in ma-
chine intelligence, but generally suffers from
incompleteness. The knowledge graph com-
pletion task aims to predict the missing entity
given the other two instances in an incomplete
triplet. Previous approaches e.g., StAR, ex-
ploit the associated textual context of triplets
to improve prediction accuracy by using pre-
trained language models. Despite achieving
performance improvements, they are inclined
to aggravate the performance gap between bidi-
rectional predictions due to the unbalanced at-
tention paid to the head or tail entity. In this
paper, we propose a dual Transformer encoding
framework combined with a semantics align-
ment mechanism to balance the roles played
by head and tail entities, such that alleviating
the performance gaps. To further improve per-
formance, a hard negative sampling strategy
is further introduced to train the model, with
a theoretical analysis provided to prove its ef-
fectiveness. Extensive experiments show that
our model surpasses the current state-of-the-
art models on three public datasets while suc-
cessfully decreasing performance gaps between
bidirectional predictions.

1 Introduction

Knowledge graph (KG), as a large-scale knowledge
database, is often represented as a multi-relational
graph, in which entities and relations are denoted
as nodes and edges, respectively. KGs are ubig-
uitous in many information systems, with appli-
cations ranging from question answering (Huang
et al., 2019), search engines (Xiong et al., 2017)
to recommendation systems (Gao et al., 2020) etc.
However, as illustrated in Figure 1, KGs in prac-
tical applications are mostly incomplete, that is,
large amount of links between entities are missing.
Therefore, completing KGs by predicting the miss-
ing links or inferring the missing entities is of great
practical importance.
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Figure 1: An example of a movie knowledge graph,
where the solid line represents a clear relationship, and
the dashed line represents a missing relationship.
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To complete a knowledge graph, a widely
adopted approach is to leverage the connection
structure among entities and relations in the graph.
Typical examples of models along this line include
TransE (Bordes et al., 2013), ComplEx (Trouil-
lon et al., 2016), RotatE (Sun et al., 2019), ConvE
(Dettmers et al., 2018), SACN (Shang et al., 2019),
KBAT (Nathani et al., 2019) and AttH (Chami et al.,
2020) etc. These methods make use of structural in-
formation in KGs to predict the missing head in the
case of (?, relation, tail) or tail in (head, relation, ?).
Although significant performance improvements
have been observed, the performance of these meth-
ods are known to be significantly limited by low
connectivity of sparse KGs.

Considering the entities and relations in KGs are
often described by words with clear semantics, it
is natural to leverage the associated texts in KG
to help the completion. In KG-BERT (Yao et al.,
2019), the words from entities and relation in a
triplet are concatenated into a sequence and then
fed into the BERT(Devlin et al., 2019) encoder to
produce a representation, based on which a proba-
bility of faithfulness for the triplet is computed. To
evaluate the faithfulness of a triplet, KG-BERT re-



quires to pass it through the entire BERT encoder,
which is computationally expensive. To reduce
the complexity, StAR (Wang et al., 2021) recently
proposed to use an asymmetric Siamese-structured
encoder to avoid the passing at every evaluation. It
is achieved by splitting every triplet into two asym-
metric segments, with the first segment composed
of words from head and relation, while the other
only composed of words from tail. Then, the repre-
sentations for all possible combinations of ‘head +
relation’, as well as the representation of tail, are
computed and stored in advance by feeding them
into the BERT encoder. When a triplet is given for
testing, we just need to retrieve the representations
corresponding to its two segments from the stor-
age. Despite lots of time being saved, we find that
the performance gap between bidirectional predic-
tion is aggravated. For instances, we observe that
StAR is easier to predict the missing entity ‘Jobs’
in (?, Founding, Apple), while struggling in giv-
ing a correct prediction for (Jobs, Founding,?).
Intuitively, the performance gap between the head-
to-tail and tail-to-head prediction should not be
aggravated since they convey the same semantic
information. By examining the model, we think the
unbalanced performance between two directions
may partially come from the asymmetric encoder
structure and triplet splitting, which gives the head
entity an unreasonable priority over the tail by al-
ways associating the relation with it.

To alleviate the issue, we developed a model
to balance the roles played by the head and tail
entities via adding another dual encoder into the
original StAR model. By associating the relation
with head and tail entities, respectively, two dif-
ferent splittings are obtained for every triplet, that
is, (head + relation, tail) and (head, relation + tail).
By feeding the two splittings into the two dual
encoder branches of our model, respectively, we
obtain two representations for every triplet, with
each giving priority to the head and tail. Since
the two representations arise from the same triplet,
they should contain the same semantic information,
but the position-sensitive BERT cannot guarantee
this. To align semantics between the two represen-
tations, a semantic alignment mechanism is further
proposed based on contrastive learning, which has
proven its effectiveness in extracting the semantic
information in both images and texts. To further
improve the prediction performance, a hard nega-
tive sampling technique is also proposed to train

the model, with a theoretical analysis provided to
explain its effectiveness. We evaluated our model
on three public datasets WN18RR, FB15K-237 and
UMLS, and significant performance improvements
have been observed over comparable baselines.

2 Preliminaries

Knowledge Graph Completion A knowledge
graph G={&, R} is a collection of triplets (h, r, )
that present commonsense relations between pairs
of entities, where h,t € R are the head and tail en-
tities respectively and r € R represents the relation
between them. Given a head h (or tail ¢) entity and
a relation, the task of knowledge graph completion
(KGC) aims at predicting the most possible tail ¢
(or head h) to make the new triplet (h,r,t) plau-
sible in G. Specifically, given a incomplete triplet
(h,r,7), the model seeks the best-suited tail entity
by enumerating every entity in £ and calculates a
score function fy : G — R to gauge its suitabil-
ity. The final triplet is completed by adding the tail
entity via t’ = argmax, ¢ f(h,r,1).

Text-based Knowledge Graph Completion
Completing knowledge graphs is challenging, since
the model needs to discover the commonsense im-
plied in the triplets. The current prevailling works
mainly focus on how to learn a meaningful contex-
tualized representation for triplets. KG-BERT first
applies pre-trained language models to learn such
informative representations, while suffers from bur-
dened computational cost during inference. StAR
circumvents this problem by using a separate en-
coding pattern. Specifically, denoting the text rep-
resentation of a triplet (b, r,t) as (z(®, z(") z(®),
instead of that done in KG-BERT, which takes a
complete triplet as input, StAR first constructs two
types of descriptions for the triplet via:

H), = [(CLS), =™ (SEP), 2, (SEP)],

1

where (CLS) and (SEP) are the special token for
classification and sentence separation in the Tans-
former architecture, respectively. Then the cor-
responding contextualized representations are en-
coded by a Transformer encoder

uy, = Transformer-Enc(H}y)[0],

2

u; = Transformer-Enc(Hy)[0],

where index 0 stands for the position of (CLS)’s
embedding. Finally, the structure-aware represen-
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Figure 2: Illustration of our asymmetry alleviation framework.

tation is obtained by a interactive concatenation
U= [Up; Up X Ug; Wy — U U (3)

We denote this Transformer-based interactive en-
coder function as

u = InterTrans-Enc(Hp,, Hy; 0), ()

where 6 denotes the parameters. Using such a sepa-
rate encoding framework, we can store the encoded
representations in advance, and then obtain the rep-
resentation of a new triplet via the concatenation
operator in (3), which would significantly improve
the inference efficiency. Besides, as mentioned in
(Wang et al., 2021), the embedding encoded in such
framework is informative enough for trained score
function to distinguish a true/false triple relation,
and yields appealing performance gains.

3 The Asymmetry Alleviation Framework

In this section, we introduce our model architecture
illustrated in Figure 2. We first point out the limita-
tions of StAR, and then propose dual Transformer
encoders with semantics alignment mechanism to
alleviate this limitation.

3.1 Limitations of StAR

Although StAR achieves considerable performance,
we observe in the experiments (see Table 4) that
it is generally good at unidirectional prediction,
but performs worse at reverse prediction. Take the
UMLS dataset as example, the model works well
in head-to-tail prediction, i.e., (7, 7,t) — h. How-
ever, in tail-to-head prediction, i.e., (h,r,?7) — t,
its performance declines shapely. By thoroughly

analysing the architecture of StAR, we find that the
potential hazard arose at the asymmetric encoding
manner. As shown in (1), the relation solely in-
teracts with the head entity, but totally ignores the
tail. Such asymmetric interaction patterns might
encourage the model to outweigh the importance of
head entity and exclusively focus on unidirectional
prediction. Motivated by our findings, we seek
for methods that augment the StAR model to al-
leviate the performance gap between bidirectional
predictions.

3.2 Dual Transformer Encoders

To alleviate the asymmetric problem, the output
of encoder should be irrelevant with the pattern
of how triplets are concatenated as input. That
is, we expect the encoder to give equal attention
to head and tail entities, rather than just giving a
high priority to one by associating it with a relation
but neglecting the other. In this end, we propose
a symmetric architecture to generate a direction
insensitive triplet representation. Specifically, in
addition to generate a heavy-head representation as
defined in (4), we also require the encoder to output
a heavy-tail representation, by first constructing the
descriptions as

Ty, = [(CLS), 2™ (SEP)],

5
T = [(CLS), 2", (SEP), 2, (SEP)]. ©)

Compared (5) with (1), it can be observed that the
difference lies at whether the relation is concate-
nated with head or tail entity. By doing so, we can
enforce the encoder to balance the status of head
and tail entities with respect to the relation, partially
alleviating the asymmetric problem to some extend.



Then the heavy-tail representation is generated by
the same interactive pattern of (4)

v = InterTrans-Enc(T}, T3; 0). (6)

Under our assumption, the heavy-tail representa-
tion v should maintain similar semantic informa-
tion with the heavy-head representation wu, since
both of them are originated from the same triplet
relation. However, the vanilla Transformer encoder
can not guarantee this deserved property, due to its
natural sensitivity of the order of input sequences.
Thereby, an additional mechanism is required to
make the two types of representations share homol-
ogous information.

3.3 Semantic Alignment Mechanism

To align the semantic space of w and v, we can first
propose a distance measure to judge their semantic
difference, and then minimize the corresponding
gap. There are a lot of distance measures can be
used to achieve this goal, such as Lo distance and
cosine similarity. However, such a simple distance
measure works unsatisfactory, as shown in Table
5. The reason why it malfunctions is apparent.
Both L, and cosine measures are only responsible
for attracting the representations v and v closer,
while not taking into account the preservation of
their semantic information at all. With these align-
ment measures, the representations are all inclined
to collapse into a single point, discarding all the
meaningful semantic information contained in the
triplets.

To align the two representations while preserv-
ing their semantic information, regarding the two
types of concatenations as the views of a triplet re-
lation, we find that the proposed dual Transformer
encoder is similar to the model architecture of con-
trastive learning (Chen et al., 2020), which gen-
erates two views of a given image by some ran-
dom operators, e.g., rotation, cropping, resizing,
etc. This inspires us to align the semantics of
u and v by using contrastive loss. Particularly,
denoting the representations output by the dual
Transformer encoders as U = {uy,...,u,} and
V = {v1,...,vp}, then the NT-Xent contrastive
loss (Chen et al., 2020) is defined as

exp(u; vi/7)

neldUV\u; exp(uiTn/T)

Lon=") log = . ()

where b denotes the batch size and 7 is the tem-
perature coefficient. By minimizing Lc7,, we can

Datasets  |Candidates|Hit@ 11 Hit@37 Hit@107 MMR MR|

normal | 237 508 725 405 47.000
WNIBRR | o clude ‘ 12 852 930 793 21800
normal | 193 316 481 288 115830
FBISK2IT] oxelude ‘ 512 664 778 607 42420
normal | 793 964 992 881 1508
UMLS | exclude ‘ 952 981 1000 969 1224

Table 1: The impact of excluding hard candidates in
knowledge graph complete task.

impose the representations of two views (i.e., u and
v) in a triplet relation to be closer, while stay away
from the others in semantic space, as illustrated in
Figure 2. This appealing property of contrastive
objective has been widely applied in image rep-
resentation learning (Wang and Isola, 2020) and
cluttering (Li et al., 2021). Here, we find that it
also generates more expressive representations of
triplet relations, which can significantly improve
the performance of knowledge graph completion
and benefit to alleviate the asymmetry problem.

4 Further Improving by Training with
Hard Negative Sampling Strategy

To obtain the final score of a given triplet, we can
use a function applied to the generated representa-
tions

s = exp(MLP([u, v]; %)),

where o denotes the sigmoid function and MLP(-)
stands for a multi-layer perceptron. For brevity,
we denote the overall model as a score function
s = fo(h,r,t), where 8 and v denote the pa-
rameters of Transformer encoder and MLP, respec-
tively. To train model, we can encourage it to give
the true triplets high scores, while low scores for
false (fabricated) triplets. In particular, the model
can be trained by minimizing the following score
fitting loss

Lsp=—Ey4)[logf(¢7)]+Eq(s)[logf(¢7)], (8)

where g(¢1) and q(¢~) denote the distribution of
true and false triplets. In practice, the set of false
triplets are obtained as D™ = ;" U D;", with the
definition of

Dy, = {(W,r,)|h" € EA (W, r,t) ¢ DT},
Dy = {(h,rt)|t' € EA(h,rt") ¢ DT},

and D™ denotes the set of true triplets. However,
we find that the model trained with the proposed
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Figure 3: Illustration of hard negative sampling strategy.

false triplet set can not distinguish hard samples
well. In particular, given a test triplet, if we exclude
out all entities connected by the same relation in
the candidates set except the correct one, the pre-
diction accuracy can be improved significantly, as
shown in Table 1. This inspires us that additional
performance gains can be obtained if we explic-
itly tell the model which are hard samples and pay
more attention to them during the training. Moti-
vated by this finding, next we propose to exploit
the hard samples to further improve the prediction
performance.

4.1 Hard Negative Sampling Strategy

Basically, we want the model to give more em-
phasis on the samples that are more likely to be
predicted incorrectly. However, the problem is how
to identify these so-called hard samples. To identify
the hard negative samples for a triplet (h,r, t), in-
stead of defining the support set of g(¢~) over D,
we restrict it in a hard negative domain H~. For
easier understanding here, we only demonstrate the
sampling procedures of the hard negative samples,
whereas the rigorous definition of H™ is available
in the appendix A.1. In particular, the hard negative
samples of (h,r,t) can be sampled from H™ via
the following three steps: i) search for a new triplet
(h',r,t") obeyed the relation r; ii) replace the head
and tail entity with 2" and ¢’ to obtain (b, 7, t) and
(h,r,t"); and iii) check whether they lies in D, if
not, go back to step i, else accept them as hard neg-
ative samples. We illustrate this strategy in Figure
3 for further comprehension.

Understanding the Hard Negative Sampling
Strategy In order to understand the impact of
hard negative samples,, we can construct an energy-
based model with the form

f(h,rt)

p(h,r,t) = 7 €))

Algorithm 1 Model Training Algorithm

Input: KG’s positive triplets set D"; Negative triplets set H
batch size b; number of negative samples n;
Output: Optimal parameters (0, ¢).

1: 8, ¢ < Initialize parameters

2: repeat > Contrastive learning stage
3 P{éf,...,¢f1~D" > Sample positive triplets
4: g(—VgECL(P;e)

5: 0 < Update parameters using g (i.e., Adam )

6: until convergence of parameters ()

7: repeat > Score fitting stage
8: P« {¢7,..., ¢ }~D" > Sample positive triplets
9: N«+{é7,..., ¢, }~H" > Sample negative triplets

10: g+ Ve,yLsr(P,N;0,1)+Lsa(P,N;0,)
11: 0, 1 < Update parameters using g (i.e., Adam )
12: until convergence of parameters (6, 1))

where Z=3",, f (', 7, 8) + 32,4 f (R, 7, 1)) de-
notes the partition function. It can be turned out
that the objective —Lgr in (8) is the lower bound of
log p(h,r,t). That means minimizing Lgr is equiv-
alent to maximize the log likelihood log p(h, r, t).
Moreover, using hard negative samples in (8) can
achieve a tighter bound than using random nega-
tive samples. Thus, the hard negative sampling
strategy would result in better local optimal after
training. We summarize the above observation in
the following proposition.

Proposition 4.1. Define a probabilistic density p =
w with Z:Zh’ﬁzf(h/’ 7 t)+2t’7étf(hv Ty t/))’
we have argming ,, Lspérargmaxg ,, log p, more
importantly, 1og p> —Lsp (qs-) > —Lsr (qp-)-

Proof. Please refer to the appendix A.2. O
4.2 The Two-stage Training

To train the model, we can simultaneously optimize
the contrastive learning and score fitting objective.
Besides, the same as StAR, we further enforce the
distance between contextualized representations in
(2) to be closed. Specifically, we define a structure
distance as d = — ||y, —u;||?, then the the distance
can be shrinked by minimizing the ranking loss

LE = max(0,\ —d +d'), (10)

where ) is the margin and d’ denotes the distance
of a negative sample. This objective is known as
structure augmentation, which can reduce disam-
biguating entities and push model to produce more
reliable ranking scores (Wang et al., 2021). Simi-
larly, we can also design a ranking loss £}, for the
heavy-tail representation in (6). Then the structure
augmentation objective is

w1 LY. (11)

Lsa =



Finally, we obtain three training objectives: con-
trastive loss L¢r,, score fitting Lsr and structure
augmentation L£ga. Instead of optimizing all of
them combinatorially, we propose a two-stage train-
ing algorithm. Specifically, we first minimize Ly,
in the contrastive learning stage, and then optimize
Lsr + Lsa in the score fitting stage. The details
are shown in Algorithm 1. After training, given an
incomplete triplet (h,r, 7), we can predict the cor-
responding tail entity via ¢ = argmax, f(h,r,t").
The tail-to-head prediction can be done in the same
way.

5 Related Work

KGC contains methods based on graph embed-
ding and methods based on text embedding. The
distance-based translation model evaluates the con-
fidence of the triplet by applying a translation func-
tion to the embeddings of head and relation and
selecting the closest tail as the result, the most typ-
ical are TransE (Bordes et al., 2013) and RotatE
(Sun et al., 2019). Semantic matching models, such
as RESCAL (Nickel et al., 2011), DistMult (Yang
et al., 2015) and QutatE (Zhang et al., 2019), the
score function of them usually are defined as a bi-
linear function. Deep neural network methods pay
more attention to the interaction between entities
and relationships, that is particularly obvious in the
ConvE (Dettmers et al., 2018) based on convolu-
tional neural networks (CNN) (Kipf and Welling,
2017). The Graph Convolutional Neural network
(GCN) (Dettmers et al., 2018) and the Attention
Graph Network (GAT) (Velickovic et al., 2018)
in the graph neural network have also been intro-
duced into KGC. The most typical ones are the
GCN-based SACN (Shang et al., 2019) and the
GAT-based KBAT (Nathani et al., 2019). How-
ever, All graph-based models mentioned above are
greatly limited by the graph structure and are not
suitable for large-scale dynamically changing KGs
at all.

In order to get rid of the limitations of graph
structure and make full use of context information
in KG, KGC models based on text embedding are
proposed, represented by KG-BERT (Yao et al.,
2019) and StAR (Wang et al., 2021). KG-BERT
expresses entities and relationships as their names
or descriptions, and then uses the name or the word
sequence of the description as the input sentences
of the fine-tuned BERT model. KG-BERT shows
good performance, but one of the main limitations

Dataset ‘ Entity Relation  Train Dev Test
WNI18RR ‘ 40943 11 86835 3034 3134
FB15k-237 ‘ 14541 237 272115 17535 20446

UMLS | 135 46 5216 652 661

Table 2: Summary statistics of datasets.

of KG-BERT is that its extremely high cost in eval-
uate and predict stages. In order to solve this prob-
lem, StAR introduced two-branch Siamese archi-
tecture (Zagoruyko and Komodakis, 2015), which
greatly improved the inference speed. StAR has
surpassed KG-BERT in model reasoning speed and
experimental effect. However, the prediction re-
sults of StAR show serious asymmetry, which con-
tradicts the independence and completeness of a
text representing a triplet. Our work developed
a model to balance the roles played by the head
and tail entities via adding another dual encoder
into the original StAR model, and alleviated the
asymmetry problem in KGC.

6 Experiment

6.1 Experiment Setup

Datasets We make evaluations on three public
KG datasets with the summary statistics shown
in Table 2. i) WN18RR: a link prediction dataset
created from the WordNet, which is ensured that
the evaluation dataset does not have inverse rela-
tion test leakage (Dettmers et al., 2018); ii) FB15k-
237: a set of Freebase entity pairs which contains
knowledge base relation triplets and textual men-
tions, in which the inverse relations of original
dataset are removed (Xie et al., 2016); ii1) UMLS:
a compendium of many controlled vocabularies in
the biomedical sciences that consists of knowledge
sources and a set of software tools.

Baselines We compare our model with several
state-of-the-art models:, covering the latest mod-
els that are the best in terms of various indica-
tors. These include TransE (Bordes et al., 2013),
DisMult (Yang et al., 2015), ComplEx (Trouillon
et al., 2016), KBGAN (Cai and Wang, 2018), R-
GCN (Schlichtkrull et al., 2018), ConvE (Dettmers
et al., 2018), convKB (Nguyen et al., 2018), KBAT
(Nathani et al., 2019), CapsE (Nguyen et al., 2019),
QuatE (Zhang et al., 2019), RotatE (Sun et al.,
2019), TuckER (Balazevic et al., 2019), AttH
(Chami et al., 2020), KG-BERT (Yao et al., 2019),
and StAR (Wang et al., 2021).



WNI18RR FB15k-237 UMLS

Models HitsT HitsT HitsT

MR} | MRRT @] @3 @10 MR| | MRRT @]l @3 @10 MR| | MRRT @1 @3 @10

Graph Embedding Approch
TransEA 2300 243  .043 441 532 | 323 279 198 376 441 | 1.840 - - 989
DisMultA | 7000 444 412 470 504 | 512 .281 199 301 446 | 5.520 - - .846
ComplExA | 7882 449 409 469 530 | 546 278 .194 297 450 | 2.590 - - 967
KBGAN - 215 - - 469 - 277 - - 458 - - - -
R-GCNA 6700 .123  .080 .137 .207 | 600 .164 .100 .181 .300 - - - -
ConvEA 4464 456 419 470 531 | 245 312 225 341 497 | 1.510 - - 990
ConvKB¢{ | 3433 249 - - 524 | 309 243 - - 421 - - - -
KBAT¢ 1921 412 - - 554 | 270 157 - - 331 - - - -
CapsEQ 718 415 - - .559 | 403 150 - - .356 - - - -
QuatE 3472 481 436 500 564 | 176 311 221 342 495 - - - -
RotatE 3340 476 428 492 571 | 177 338 241 375 533 - - - -
TuckER - 470 .443*% 482 526 - 358%  .266% .394% .544* - - - -
AttH - 486* .443*% 499 573 - 348 252 384 540 - - - -
Text Encoding Approch

KG-BERT 97 216 .041 302 .524 | 153 - - - 420 | 1.550 .870  .790 937 .990
StAR 54% 411 264 491 709 | 117% 288 .193 315 481 | 1970 .836 .729 933 991
Ours 54* 412 235 .517* .J750% | 119 291 197 321 484 | 1.508* .881* .793* .964* .992%

Table 3: Comparison of the proposed method against baseline models. A marked results are reported by (Nathani
et al., 2019), ¢ marked results are re-evaluated by (Sun et al., 2020), StAR is re-implemented by ourselves using its
public code and the others are taken from the original papers. Best results for each genre are marked in bold and the
started numbers denote the state-of-the-art performance. T means higher is better, and | versa.

o Hit@ 1 Hit@31 Hit@107 MMR7 MR/
Datasets | Method | " Sohe  diff | left right diff | left right diff | left right diff | left  right  diff
WNISRR | S 231 297 066 | 456 526 070 | 665 751 086 | 368 449 081 | 57.549 51.098 6.451
ours | .208 264 .056 | 483 551 .068 |.712 783 071 |.382 441 .059 | 53206 49.194 4.012
FBISK.237 | ST A1l 275 164 | 218 413 .195 | 389 573 184 | 201 375 .174 | 140266 93.734 46532
ours | .121 273 152|229 413 184 | 394 573 179 | 218 376 .158 | 135.037 94.965 40.072
UMLS star 770 689 081 | 969 897 072 |.993 968 .025 | 870 .802 .068 | 1459 2481  1.022
ours | .809 .778 .031 | 982 .946 .036 |.997 98¢ .011 |.897 .865 .032 | 1298 1718  .420

Table 4: Comparison of the asymmetry alleviation degree on the UMLS dataset
prediction, i.e., (?,7,t) — h, “right” means the head-to-tail prediction, i.e., (h,r,?) — t and “diff” means the
performance difference of bidirectional predictions.

Evaluation Protocol

For the sake of fairness,

. “Left” means the tail-to-head

perature coefficient of contrastive loss in (7), the

we follow the evaluation protocol in (Sun et al.,
2020). Particularly, given a test triplet, we first
corrupt its head or tail using other entities in the KG.
Then the trained model ranks ground triplet over
the corrupted ones according to their scores with
“filtered” setting (Bordes et al., 2013). we adopt
three metrics: Mean Rank (MR), Mean Reciprocal
Rank (MRR) and Hits at N (Hit@N with N = 1, 3,

10) as evaluation criteria separately.

Implementation Details In our experiment, the
Transformer encoder is a 12-layer, 12-head, 768-
dimensional RoOBERTa module (Liu et al., 2019)
initialized from its public pre-trained parameters.
The input text data is a truncated word sequence
with the length of 32,128, 16 for the WN18RR,
FB15K-237 and UMLS, respectively. The tem-

number of negative samples in (8) and the margin
coefficient in (10) are fixed to 0.05, 1 and 5, respec-
tively. We train the model using Adam optimizer
(Kingma and Ba, 2015) with the learning rate of
2e — 5 and the dropout rate of 0.1. According to
the performance observed on the validation set, we
choose the batch size from {16, 32} and the epochs
for each training stage from {5, 10, 20}, with the
best best setting used for evaluation on the test set.

6.2 Performance and Analysis

Main Results The performance of our model and
competitive baselines are illustrated in Table 3. In
can be observed that the proposed model achieves
superior performance on all datasets and surpasses
state-of-art models on most metrics. Especially
in terms of MR, which is an extremly important



Distance | Hit@11 Hit@37 Hit@10f MRRT MR]

Loy ‘ 0397  0.663 0.836  0.561 6.547
Cosine ‘ 0.437  0.674 0.856  0.583 6.691
CL ‘ 0.793  0.964 0.992  0.881 1.508

Table 5: Effect of using different semantic alignment
strategies on the UMLS dataset.

indicator in information retrieval, the significant
performance gains obtained in this metric demon-
strate the superiority of our model, indicating that
better semantic information can be extracted by our
model. Besides, on UMLS dataset, our model con-
sistently outperforms baselines on all metrics, and
on WN18RR, our model surpasses all other meth-
ods by a large margin in terms of Hits@10. These
remarkable gratuities strongly corroborate the ben-
efit of our contrastive-based asymmetry alleviation
framework. When examining the performance on
the FB15k-237 dataset, we find that all text-based
approaches inferior than graph-based ones. This
phenomenon is consistent with experiment results
in previous works (Wang et al., 2021). In spite of
that, thanks to the introduction of asymmetry al-
leviation mechanism, our model still remarkably
outperforms other test embedding methods, like
KG-BERT and StAR.

Asymmetry Alleviation Analysis The asymme-
try issue is manifested in that, for the same test
triplet, the effect of prediction from head to tail, i.e.,
(h,r,?7) — t, and prediction from tail to head, i.e.,
(?,7,t) — h, varies significantly. To test whether
our model can alleviate this problem, we explicitly
carry out experiments in the two predicted direc-
tions. The statistical results on all metrics and
datasets are shown in Table 4. It can be seen that,
compared with StAR, our model achieves smaller
performance gap between predictions in two direc-
tions. Especially in the UMLS dataset, our model
reduces the performance gap by a factor of two.
This result clearly shows that our model alleviates
the problem of asymmetry in prediction to a certain
extent, and thus shows better performance overall.

Impact of Semantics Alignment The semantic
alignment mechanism plays an important role in
our model architecture. To investigate the influence
of different alignment methods, we further exper-
iment with two different distance measures: the
L, distance and cosine distance. As seen form Ta-
ble 5, contrastive loss achieves better performance

Method Hit@11 Hit@31 Hit@10 MRRT MR]
| |Random| 713 899 975 818 1941
Hard | 719 903 984  .829 1.830
, [Random| 781 947 980 852 1613
Hard | .794 952 989  .876 1.549
s |Random| 789 951 991 863 1512
Hard | 793 964 992  .881 1.508

Table 6: Comparison of using random and hard nega-
tive samples on the UMLS dataset. (1, 3,5) means the
number of negative samples.

than the other two measures. This is partially be-
cause, the Lo and cosine distance only impose the
two type of representations (it i.e., u and v) to be
closed, but not push them away from the negative
samples, which is inclined to make all represen-
tations collapse in a single compact hyperspace
and result in indistinguishable and meaningless
embeddings. However, by simultaneously requir-
ing the alignment and uniformity of the generated
features (Wang and Isola, 2020), contrastive loss
successfully aligns the semantics of two types of
representations and thus improves the performance.

Effect of Hard Negative Sampling To evaluate
the effect of the hard negative sampling strategy, we
compare the model performance of using random
and hard negative samples. As shown in Table 6,
under the premise of the same number of negative
samples, the performance of using hard negative
samples are better than that of using random sam-
ples. Besides, we find that increasing the number
of negative samples could introduce additional per-
formance gains. However, large number would sig-
nificantly improve the computational complexity.
Based on the trade-off between computational cost
and performance benefits, we find 5 is a suitable
number for negative sampling.

7 Conclusion

We proposed a method for knowledge graph com-
pletion. Specifically, we introduced a dual Trans-
former encoding framework combined with a se-
mantics alignment mechanism to alleviate the
asymmetry problem of StAR. To enhance model
ability, a negative sampling strategy was further de-
veloped and justified theoretically. Extensive eval-
uations demonstrated that our model significantly
outperforms baseline methods and effectively re-
duces the performance gaps of bidirectional predic-
tion.
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A Appendix
A.1 Definition of H™

In section 4.1, we propose to draw the negative sam-
ples form a hard domain H™. Here, we provide the
rigid definition of H ™. Specifically, given a triplet
(h,r,t), its hard negative samples can be drew from
the set H™ = H, U H, ", with the definition of

H, ={(,r,t)|W €& A (I, rt)eD;, NTS},
Hy = {(h,r,¢)[t' €€ A (h,r, ") €Dy NT/Y,

where ']I‘Z and T are respectively defined as

Ty ={(0',r )3 €€, 1 €€ A (W7, #) DT},
T/ ={(h,r,t)|3W €€,t' €€ A (W, r,t)) €D}

Roughly speaking, the hard negative sample for a
given triplet (h,r,t) is defined as a corrupt triplet
(W,r,t) € D™ (or (h,r,t') € D7), in which the
substituted entity 2’ (or ¢’) should be related to one
entity in the knowledge graph G with relation r.

A.2 Proof of Proposition 4.1

To train our model f(h,r,t), we can define an
energy-based model as

f(h,rt)
Z )

where Z = Zh’;éhf(h/? Ty t) + Zt’;étf(ha T, t/)) de-
notes the partition function, and then maximize the
log likelihood of p(h, r,t). Next, we show that the
training objective in (8) is equivalent to the maxi-
mum likelihood estimation.

To facilitate discussion, we denote ¢ = (h, 7, 1)
in the following. We have

log p(¢) = log f(¢) — log Z
= log f(¢) — Ey(g)llog f(0)]
— H(q(¢)) — KL(q||p)
> log f(¢) — Eq(g)[log f(9)],

where H(-) denotes the Shannon entropy and
K L(-||-) is the Kullback—Leibler divergence. The
last inequality holds since the entropy and KL di-
vergence are both non-negative for discrete distri-
bution. By constricting the support set of ¢(¢) to
be D, we have

p(h,rt) =

(12)

argmax log p < argmin LgF.
0,7 6,9

Next, we show that the inequality in Proposition
4.1 holds. We first denote g(¢~) with the support
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seton D~ as gp- (¢), and gg- (¢) denotes the neg-
ative distribution over H™~. Then according to the
(12), we have

log p(¢) >log f(¢) —Eqy, [log f(#)] = —Lsr(qu-)-

w.Lt.g., since ¢p- (¢) is more widely uniform than
qu-(¢), thereby H(qp-) = H(qy-). Besides,
since the triplet in H™ is harder than that in D,
it is reasonable to assume the score of entities
in H™ is higher than those in D™. So we have
KL(qu-lp) < KL(qp-||p). According to (12),
the following inequality holds

— Lsr(qp-) £ 1og f(¢)—Ey,_[log f(¢)]
<log f(¢)—Ey, [log f(#)] = —Lsr(qa-)-

Thus, we end up with our proof at

logp > —Lsr(qu-) > —Lsr(qp-)-

This inequality shows that, compared with the ran-
dom negatives, the hard negative sampling strategy
has a tighter lower bound and thus achieves a better
estimation of the likelihood.

A.3 Case Study

In Table 7, we present some ranking cases of the
given test triplets on the UMLS dataset. It can be
seen that our model works well in both head-to-
tail and tail-to-head predictions. However, StAR is
generally good at unidirectional prediction but per-
forms worse at reverse prediction. This observation
further confirms the effectiveness of our asymmetry
alleviation mechanism.



Test triplet Predict StAR Ours
1. receptor 1. receptor
tail-to-head 2. bod}T_part_oFgan_or_organ_component 2. medlcal_.dewce '
3. medical_device 3. drug_delivery_device
(receptor, . .
isa 4. regulation_or_law 4. clinical_drug
’ 1. mental_process 1. substance
substance) . . . .
.. | 2. immunologic_factor 2. chemical_viewed_structurally
head-to-tail L. . . L
3. vitamin 3. indicator_reagent_or_diagnostic_aid
9. substance 4. organic_chemical
1. cell 1. cell
. 2. gene_or_genome 2. gene_or_genome
tail-to-head . - . .
(cell 3. fully_formed_anatomical_structure 3. fully_formed_anatomical_structure
locatior; of 4. embryonic_structure 4. embryonic_structure
. - 1. natural_phenomenon_or_process 1. natural_phenomenon_or_process
therapeutic_or_preventive_procedure) .. R . N
.. | 2. clinical_attribute 2. therapeutic_or_preventive_procedure
head-to-tail . .
3. organism_attribute 3. alga
5. therapeutic_or_preventive_procedure | 4. fish
1. chemical_viewed_functionally 1. eicosanoid
. 2. element_ion_or_isotope 2. steroid
tail-to-head . . X . . .
. 3. inorganic_chemical 3. chemical_viewed_functionally
(steroid, . . . .
. . 4. steroid 4.inorganic_chemical
interacts_with, .
. . 1. body_substance 1. steroid
eicosanoid) .. . .
head-to-tail 2. lipid 2. eicosanoid
3. biomedical_occupation_or_discipline 3. lipid
11. eicosanoid 4. carbohydrate

(acquired_abnormality,
co-occurs_with,
injury_or_poisoning)

tail-to-head

. congenital_abnormality
. acquired_abnormality
. anatomical_abnormality
. mental_process

. congenital_abnormality
. acquired_abnormality
. anatomical_abnormality
. injury_or_poisoning

head-to-tail

W =AW -

. biomedical_occupation_or_discipline
. experimental_model_of_disease
. congenital_abnormality

10. injury_or_poisoning

. acquired_abnormality

. congenital_abnormality

. injury_or_poisoning

. experimental_model_of_disease

(experimental_model_of_disease,
co-occurs_with,
anatomical_abnormality)

tail-to-head

. experimental_model_of disease

. anatomical_abnormality

. injury_or_poisoning

. professional_or_occupational_group

. experimental_model_of disease
. anatomical_abnormality

. injury_or_poisoning

. sign_or_symptom

head-to-tail

. experimental_model_of_disease
. disease_or_syndrome

. neoplastic_process

. anatomical_abnormality

. anatomical_abnormality

. experimental_model_of_disease
. neoplastic_process
disease_or_syndrome

(laboratory_procedure,
assesses_effect_of,
element_ion_or_isotope)

tail-to-head

LN = | QN W =AW -

. laboratory_procedure

. molecular_biology_research_technique
. research_activity

. therapeutic_or_preventive_procedure

. laboratory_procedure

. professional_or_occupational_group
. professional_or_occupational_group
. laboratory_or_test_result

head-to-tail

W N =

. body_substance
. clinical_attribute
. organism_attribute

15. element_ion_or_isotope

. body_substance

. element_ion_or_isotope
. quantitative_concept

. clinical_attribute

(laboratory_or_test_result,
co-occurs_with,
sign_or_symptom)

tail-to-head

1. professional_or_occupational_group
2. congenital_abnormality

3.

disease_or_syndrome

19. laboratory_or_test_result

. laboratory_or_test_result
. sign_or_symptom

. congenital_abnormality

. acquired_abnormality

head-to-tail

1. biomedical_occupation_or_discipline

2.
3.
4.

occupation_or_discipline
intellectual_product
sign_or_symptom

. sign_or_symptom

. conceptual_entity

. biomedical_occupation_or_discipline
. occupation_or_discipline

Table 7: Cases of the asymmetry alleviation on the UMLS dataset.
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