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Abstract
Knowledge graph is a set of triplets, i.e., (head,001
relation, tail), that plays a crucial role in ma-002
chine intelligence, but generally suffers from003
incompleteness. The knowledge graph com-004
pletion task aims to predict the missing entity005
given the other two instances in an incomplete006
triplet. Previous approaches e.g., StAR, ex-007
ploit the associated textual context of triplets008
to improve prediction accuracy by using pre-009
trained language models. Despite achieving010
performance improvements, they are inclined011
to aggravate the performance gap between bidi-012
rectional predictions due to the unbalanced at-013
tention paid to the head or tail entity. In this014
paper, we propose a dual Transformer encoding015
framework combined with a semantics align-016
ment mechanism to balance the roles played017
by head and tail entities, such that alleviating018
the performance gaps. To further improve per-019
formance, a hard negative sampling strategy020
is further introduced to train the model, with021
a theoretical analysis provided to prove its ef-022
fectiveness. Extensive experiments show that023
our model surpasses the current state-of-the-024
art models on three public datasets while suc-025
cessfully decreasing performance gaps between026
bidirectional predictions.027

1 Introduction028

Knowledge graph (KG), as a large-scale knowledge029

database, is often represented as a multi-relational030

graph, in which entities and relations are denoted031

as nodes and edges, respectively. KGs are ubiq-032

uitous in many information systems, with appli-033

cations ranging from question answering (Huang034

et al., 2019), search engines (Xiong et al., 2017)035

to recommendation systems (Gao et al., 2020) etc.036

However, as illustrated in Figure 1, KGs in prac-037

tical applications are mostly incomplete, that is,038

large amount of links between entities are missing.039

Therefore, completing KGs by predicting the miss-040

ing links or inferring the missing entities is of great041

practical importance.042
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Figure 1: An example of a movie knowledge graph,
where the solid line represents a clear relationship, and
the dashed line represents a missing relationship.

To complete a knowledge graph, a widely 043

adopted approach is to leverage the connection 044

structure among entities and relations in the graph. 045

Typical examples of models along this line include 046

TransE (Bordes et al., 2013), ComplEx (Trouil- 047

lon et al., 2016), RotatE (Sun et al., 2019), ConvE 048

(Dettmers et al., 2018), SACN (Shang et al., 2019), 049

KBAT (Nathani et al., 2019) and AttH (Chami et al., 050

2020) etc. These methods make use of structural in- 051

formation in KGs to predict the missing head in the 052

case of (?, relation, tail) or tail in (head, relation, ?). 053

Although significant performance improvements 054

have been observed, the performance of these meth- 055

ods are known to be significantly limited by low 056

connectivity of sparse KGs. 057

Considering the entities and relations in KGs are 058

often described by words with clear semantics, it 059

is natural to leverage the associated texts in KG 060

to help the completion. In KG-BERT (Yao et al., 061

2019), the words from entities and relation in a 062

triplet are concatenated into a sequence and then 063

fed into the BERT(Devlin et al., 2019) encoder to 064

produce a representation, based on which a proba- 065

bility of faithfulness for the triplet is computed. To 066

evaluate the faithfulness of a triplet, KG-BERT re- 067
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quires to pass it through the entire BERT encoder,068

which is computationally expensive. To reduce069

the complexity, StAR (Wang et al., 2021) recently070

proposed to use an asymmetric Siamese-structured071

encoder to avoid the passing at every evaluation. It072

is achieved by splitting every triplet into two asym-073

metric segments, with the first segment composed074

of words from head and relation, while the other075

only composed of words from tail. Then, the repre-076

sentations for all possible combinations of ‘head +077

relation’, as well as the representation of tail, are078

computed and stored in advance by feeding them079

into the BERT encoder. When a triplet is given for080

testing, we just need to retrieve the representations081

corresponding to its two segments from the stor-082

age. Despite lots of time being saved, we find that083

the performance gap between bidirectional predic-084

tion is aggravated. For instances, we observe that085

StAR is easier to predict the missing entity ‘Jobs’086

in (?, Founding,Apple), while struggling in giv-087

ing a correct prediction for (Jobs, Founding, ?).088

Intuitively, the performance gap between the head-089

to-tail and tail-to-head prediction should not be090

aggravated since they convey the same semantic091

information. By examining the model, we think the092

unbalanced performance between two directions093

may partially come from the asymmetric encoder094

structure and triplet splitting, which gives the head095

entity an unreasonable priority over the tail by al-096

ways associating the relation with it.097

To alleviate the issue, we developed a model098

to balance the roles played by the head and tail099

entities via adding another dual encoder into the100

original StAR model. By associating the relation101

with head and tail entities, respectively, two dif-102

ferent splittings are obtained for every triplet, that103

is, (head + relation, tail) and (head, relation + tail).104

By feeding the two splittings into the two dual105

encoder branches of our model, respectively, we106

obtain two representations for every triplet, with107

each giving priority to the head and tail. Since108

the two representations arise from the same triplet,109

they should contain the same semantic information,110

but the position-sensitive BERT cannot guarantee111

this. To align semantics between the two represen-112

tations, a semantic alignment mechanism is further113

proposed based on contrastive learning, which has114

proven its effectiveness in extracting the semantic115

information in both images and texts. To further116

improve the prediction performance, a hard nega-117

tive sampling technique is also proposed to train118

the model, with a theoretical analysis provided to 119

explain its effectiveness. We evaluated our model 120

on three public datasets WN18RR, FB15K-237 and 121

UMLS, and significant performance improvements 122

have been observed over comparable baselines. 123

2 Preliminaries 124

Knowledge Graph Completion A knowledge 125

graph G={E ,R} is a collection of triplets (h, r, t) 126

that present commonsense relations between pairs 127

of entities, where h, t ∈ R are the head and tail en- 128

tities respectively and r ∈ R represents the relation 129

between them. Given a head h (or tail t) entity and 130

a relation, the task of knowledge graph completion 131

(KGC) aims at predicting the most possible tail t 132

(or head h) to make the new triplet (h, r, t) plau- 133

sible in G. Specifically, given a incomplete triplet 134

(h, r, ?), the model seeks the best-suited tail entity 135

by enumerating every entity in E and calculates a 136

score function fθ : G → R to gauge its suitabil- 137

ity. The final triplet is completed by adding the tail 138

entity via t′ = argmaxt∈E f(h, r, t). 139

Text-based Knowledge Graph Completion 140

Completing knowledge graphs is challenging, since 141

the model needs to discover the commonsense im- 142

plied in the triplets. The current prevailling works 143

mainly focus on how to learn a meaningful contex- 144

tualized representation for triplets. KG-BERT first 145

applies pre-trained language models to learn such 146

informative representations, while suffers from bur- 147

dened computational cost during inference. StAR 148

circumvents this problem by using a separate en- 149

coding pattern. Specifically, denoting the text rep- 150

resentation of a triplet (h, r, t) as (x(h), x(r), x(t)), 151

instead of that done in KG-BERT, which takes a 152

complete triplet as input, StAR first constructs two 153

types of descriptions for the triplet via: 154

Hh = [⟨CLS⟩, x(h), ⟨SEP⟩, x(r), ⟨SEP⟩],
Ht = [⟨CLS⟩, x(t), ⟨SEP⟩],

(1) 155

where ⟨CLS⟩ and ⟨SEP⟩ are the special token for 156

classification and sentence separation in the Tans- 157

former architecture, respectively. Then the cor- 158

responding contextualized representations are en- 159

coded by a Transformer encoder 160

uh = Transformer-Enc(Hh)[0],

ut = Transformer-Enc(Ht)[0],
(2) 161

where index 0 stands for the position of ⟨CLS⟩’s 162

embedding. Finally, the structure-aware represen- 163
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Figure 2: Illustration of our asymmetry alleviation framework.

tation is obtained by a interactive concatenation164

u = [uh;uh × ut;uh − ut;ut]. (3)165

We denote this Transformer-based interactive en-166

coder function as167

u = InterTrans-Enc(Hh, Ht;θ), (4)168

where θ denotes the parameters. Using such a sepa-169

rate encoding framework, we can store the encoded170

representations in advance, and then obtain the rep-171

resentation of a new triplet via the concatenation172

operator in (3), which would significantly improve173

the inference efficiency. Besides, as mentioned in174

(Wang et al., 2021), the embedding encoded in such175

framework is informative enough for trained score176

function to distinguish a true/false triple relation,177

and yields appealing performance gains.178

3 The Asymmetry Alleviation Framework179

In this section, we introduce our model architecture180

illustrated in Figure 2. We first point out the limita-181

tions of StAR, and then propose dual Transformer182

encoders with semantics alignment mechanism to183

alleviate this limitation.184

3.1 Limitations of StAR185

Although StAR achieves considerable performance,186

we observe in the experiments (see Table 4) that187

it is generally good at unidirectional prediction,188

but performs worse at reverse prediction. Take the189

UMLS dataset as example, the model works well190

in head-to-tail prediction, i.e., (?, r, t) → h. How-191

ever, in tail-to-head prediction, i.e., (h, r, ?) → t,192

its performance declines shapely. By thoroughly193

analysing the architecture of StAR, we find that the 194

potential hazard arose at the asymmetric encoding 195

manner. As shown in (1), the relation solely in- 196

teracts with the head entity, but totally ignores the 197

tail. Such asymmetric interaction patterns might 198

encourage the model to outweigh the importance of 199

head entity and exclusively focus on unidirectional 200

prediction. Motivated by our findings, we seek 201

for methods that augment the StAR model to al- 202

leviate the performance gap between bidirectional 203

predictions. 204

3.2 Dual Transformer Encoders 205

To alleviate the asymmetric problem, the output 206

of encoder should be irrelevant with the pattern 207

of how triplets are concatenated as input. That 208

is, we expect the encoder to give equal attention 209

to head and tail entities, rather than just giving a 210

high priority to one by associating it with a relation 211

but neglecting the other. In this end, we propose 212

a symmetric architecture to generate a direction 213

insensitive triplet representation. Specifically, in 214

addition to generate a heavy-head representation as 215

defined in (4), we also require the encoder to output 216

a heavy-tail representation, by first constructing the 217

descriptions as 218

Th = [⟨CLS⟩, x(h), ⟨SEP⟩],
Tt = [⟨CLS⟩, x(r), ⟨SEP⟩, x(t), ⟨SEP⟩].

(5) 219

Compared (5) with (1), it can be observed that the 220

difference lies at whether the relation is concate- 221

nated with head or tail entity. By doing so, we can 222

enforce the encoder to balance the status of head 223

and tail entities with respect to the relation, partially 224

alleviating the asymmetric problem to some extend. 225
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Then the heavy-tail representation is generated by226

the same interactive pattern of (4)227

v = InterTrans-Enc(Th, Tt;θ). (6)228

Under our assumption, the heavy-tail representa-229

tion v should maintain similar semantic informa-230

tion with the heavy-head representation u, since231

both of them are originated from the same triplet232

relation. However, the vanilla Transformer encoder233

can not guarantee this deserved property, due to its234

natural sensitivity of the order of input sequences.235

Thereby, an additional mechanism is required to236

make the two types of representations share homol-237

ogous information.238

3.3 Semantic Alignment Mechanism239

To align the semantic space of u and v, we can first240

propose a distance measure to judge their semantic241

difference, and then minimize the corresponding242

gap. There are a lot of distance measures can be243

used to achieve this goal, such as L2 distance and244

cosine similarity. However, such a simple distance245

measure works unsatisfactory, as shown in Table246

5. The reason why it malfunctions is apparent.247

Both L2 and cosine measures are only responsible248

for attracting the representations u and v closer,249

while not taking into account the preservation of250

their semantic information at all. With these align-251

ment measures, the representations are all inclined252

to collapse into a single point, discarding all the253

meaningful semantic information contained in the254

triplets.255

To align the two representations while preserv-256

ing their semantic information, regarding the two257

types of concatenations as the views of a triplet re-258

lation, we find that the proposed dual Transformer259

encoder is similar to the model architecture of con-260

trastive learning (Chen et al., 2020), which gen-261

erates two views of a given image by some ran-262

dom operators, e.g., rotation, cropping, resizing,263

etc. This inspires us to align the semantics of264

u and v by using contrastive loss. Particularly,265

denoting the representations output by the dual266

Transformer encoders as U = {u1, . . . ,ub} and267

V = {v1, . . . ,vb}, then the NT-Xent contrastive268

loss (Chen et al., 2020) is defined as269

LCL=−
∑
i

log
exp(uT

i vi/τ)∑
n∈U∪V\ui

exp(uT
i n/τ)

, (7)270

where b denotes the batch size and τ is the tem-271

perature coefficient. By minimizing LCL, we can272

Datasets Candidates Hit@1↑ Hit@3↑ Hit@10↑ MMR↑ MR↓

WN18RR
normal .237 .508 .725 .405 47.000

exclude .712 .852 .930 .793 21.800

FB15k-237
normal .193 .316 .481 .288 115.830

exclude .512 .664 .778 .607 42.420

UMLS
normal .793 .964 .992 .881 1.508

exclude .952 .981 1.000 .969 1.224

Table 1: The impact of excluding hard candidates in
knowledge graph complete task.

impose the representations of two views (i.e., u and 273

v) in a triplet relation to be closer, while stay away 274

from the others in semantic space, as illustrated in 275

Figure 2. This appealing property of contrastive 276

objective has been widely applied in image rep- 277

resentation learning (Wang and Isola, 2020) and 278

cluttering (Li et al., 2021). Here, we find that it 279

also generates more expressive representations of 280

triplet relations, which can significantly improve 281

the performance of knowledge graph completion 282

and benefit to alleviate the asymmetry problem. 283

4 Further Improving by Training with 284

Hard Negative Sampling Strategy 285

To obtain the final score of a given triplet, we can 286

use a function applied to the generated representa- 287

tions 288

s = exp(MLP([u,v];ψ)), 289

where σ denotes the sigmoid function and MLP(·) 290

stands for a multi-layer perceptron. For brevity, 291

we denote the overall model as a score function 292

s = fθ,ψ(h, r, t), where θ and ψ denote the pa- 293

rameters of Transformer encoder and MLP, respec- 294

tively. To train model, we can encourage it to give 295

the true triplets high scores, while low scores for 296

false (fabricated) triplets. In particular, the model 297

can be trained by minimizing the following score 298

fitting loss 299

LSF=−Eq(ϕ+)[logf(ϕ
+)]+Eq(ϕ−)[logf(ϕ

−)], (8) 300

where q(ϕ+) and q(ϕ−) denote the distribution of 301

true and false triplets. In practice, the set of false 302

triplets are obtained as D− = D−
h ∪ D−

t , with the 303

definition of 304

D−
h =

{
(h′, r, t)

∣∣h′ ∈ E ∧ (h′, r, t) /∈ D+
}
, 305

D−
t =

{
(h, r, t′)

∣∣t′ ∈ E ∧ (h, r, t′) /∈ D+
}
, 306

and D+ denotes the set of true triplets. However, 307

we find that the model trained with the proposed 308
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Figure 3: Illustration of hard negative sampling strategy.

false triplet set can not distinguish hard samples309

well. In particular, given a test triplet, if we exclude310

out all entities connected by the same relation in311

the candidates set except the correct one, the pre-312

diction accuracy can be improved significantly, as313

shown in Table 1. This inspires us that additional314

performance gains can be obtained if we explic-315

itly tell the model which are hard samples and pay316

more attention to them during the training. Moti-317

vated by this finding, next we propose to exploit318

the hard samples to further improve the prediction319

performance.320

4.1 Hard Negative Sampling Strategy321

Basically, we want the model to give more em-322

phasis on the samples that are more likely to be323

predicted incorrectly. However, the problem is how324

to identify these so-called hard samples. To identify325

the hard negative samples for a triplet (h, r, t), in-326

stead of defining the support set of q(ϕ−) over D−,327

we restrict it in a hard negative domain H−. For328

easier understanding here, we only demonstrate the329

sampling procedures of the hard negative samples,330

whereas the rigorous definition of H− is available331

in the appendix A.1. In particular, the hard negative332

samples of (h, r, t) can be sampled from H− via333

the following three steps: i) search for a new triplet334

(h′, r, t′) obeyed the relation r; ii) replace the head335

and tail entity with h′ and t′ to obtain (h′, r, t) and336

(h, r, t′); and iii) check whether they lies in D−, if337

not, go back to step i, else accept them as hard neg-338

ative samples. We illustrate this strategy in Figure339

3 for further comprehension.340

Understanding the Hard Negative Sampling341

Strategy In order to understand the impact of342

hard negative samples„ we can construct an energy-343

based model with the form344

p(h, r, t) =
f(h, r, t)

Z
, (9)345

Algorithm 1 Model Training Algorithm
Input: KG’s positive triplets set D+; Negative triplets set H−;
batch size b; number of negative samples n;
Output: Optimal parameters (θ,ϕ).
1: θ,ϕ← Initialize parameters
2: repeat ▷ Contrastive learning stage
3: P←{ϕ+

1 , . . . , ϕ
+
b }∼D+ ▷ Sample positive triplets

4: g←∇θLCL(P;θ)
5: θ←Update parameters using g (i.e., Adam )
6: until convergence of parameters (θ)
7: repeat ▷ Score fitting stage
8: P←{ϕ+

1 , . . . , ϕ
+
b }∼D+ ▷ Sample positive triplets

9: N←{ϕ−
1 , . . . , ϕ

−
n }∼H− ▷ Sample negative triplets

10: g←∇θ,ψLSF(P,N ;θ,ψ)+LSA(P,N ;θ,ψ)
11: θ,ψ←Update parameters using g (i.e., Adam )
12: until convergence of parameters (θ,ψ)

where Z=
∑

h′̸=hf(h
′, r, t)+

∑
t′̸=tf(h, r, t

′)) de- 346

notes the partition function. It can be turned out 347

that the objective −LSF in (8) is the lower bound of 348

log p(h, r, t). That means minimizing LSF is equiv- 349

alent to maximize the log likelihood log p(h, r, t). 350

Moreover, using hard negative samples in (8) can 351

achieve a tighter bound than using random nega- 352

tive samples. Thus, the hard negative sampling 353

strategy would result in better local optimal after 354

training. We summarize the above observation in 355

the following proposition. 356

Proposition 4.1. Define a probabilistic density p = 357
f(h,r,t)

Z with Z=
∑

h′̸=hf(h
′, r, t)+

∑
t′̸=tf(h, r, t

′)), 358

we have argminθ,ψ LSF⇔argmaxθ,ψ log p, more 359

importantly, log p≥−LSF(qH−)≥−LSF(qD−). 360

Proof. Please refer to the appendix A.2. 361

4.2 The Two-stage Training 362

To train the model, we can simultaneously optimize 363

the contrastive learning and score fitting objective. 364

Besides, the same as StAR, we further enforce the 365

distance between contextualized representations in 366

(2) to be closed. Specifically, we define a structure 367

distance as d = −∥uh−ut∥2, then the the distance 368

can be shrinked by minimizing the ranking loss 369

LuR = max(0, λ− d+ d′), (10) 370

where λ is the margin and d′ denotes the distance 371

of a negative sample. This objective is known as 372

structure augmentation, which can reduce disam- 373

biguating entities and push model to produce more 374

reliable ranking scores (Wang et al., 2021). Simi- 375

larly, we can also design a ranking loss LvR for the 376

heavy-tail representation in (6). Then the structure 377

augmentation objective is 378

LSA = LuR + LvR. (11) 379
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Finally, we obtain three training objectives: con-380

trastive loss LCL, score fitting LSF and structure381

augmentation LSA. Instead of optimizing all of382

them combinatorially, we propose a two-stage train-383

ing algorithm. Specifically, we first minimize LCL384

in the contrastive learning stage, and then optimize385

LSF + LSA in the score fitting stage. The details386

are shown in Algorithm 1. After training, given an387

incomplete triplet (h, r, ?), we can predict the cor-388

responding tail entity via t = argmaxt′ f(h, r, t
′).389

The tail-to-head prediction can be done in the same390

way.391

5 Related Work392

KGC contains methods based on graph embed-393

ding and methods based on text embedding. The394

distance-based translation model evaluates the con-395

fidence of the triplet by applying a translation func-396

tion to the embeddings of head and relation and397

selecting the closest tail as the result, the most typ-398

ical are TransE (Bordes et al., 2013) and RotatE399

(Sun et al., 2019). Semantic matching models, such400

as RESCAL (Nickel et al., 2011), DistMult (Yang401

et al., 2015) and QutatE (Zhang et al., 2019), the402

score function of them usually are defined as a bi-403

linear function. Deep neural network methods pay404

more attention to the interaction between entities405

and relationships, that is particularly obvious in the406

ConvE (Dettmers et al., 2018) based on convolu-407

tional neural networks (CNN) (Kipf and Welling,408

2017). The Graph Convolutional Neural network409

(GCN) (Dettmers et al., 2018) and the Attention410

Graph Network (GAT) (Velickovic et al., 2018)411

in the graph neural network have also been intro-412

duced into KGC. The most typical ones are the413

GCN-based SACN (Shang et al., 2019) and the414

GAT-based KBAT (Nathani et al., 2019). How-415

ever, All graph-based models mentioned above are416

greatly limited by the graph structure and are not417

suitable for large-scale dynamically changing KGs418

at all.419

In order to get rid of the limitations of graph420

structure and make full use of context information421

in KG, KGC models based on text embedding are422

proposed, represented by KG-BERT (Yao et al.,423

2019) and StAR (Wang et al., 2021). KG-BERT424

expresses entities and relationships as their names425

or descriptions, and then uses the name or the word426

sequence of the description as the input sentences427

of the fine-tuned BERT model. KG-BERT shows428

good performance, but one of the main limitations429

Dataset Entity Relation Train Dev Test

WN18RR 40943 11 86835 3034 3134

FB15k-237 14541 237 272115 17535 20446

UMLS 135 46 5216 652 661

Table 2: Summary statistics of datasets.

of KG-BERT is that its extremely high cost in eval- 430

uate and predict stages. In order to solve this prob- 431

lem, StAR introduced two-branch Siamese archi- 432

tecture (Zagoruyko and Komodakis, 2015), which 433

greatly improved the inference speed. StAR has 434

surpassed KG-BERT in model reasoning speed and 435

experimental effect. However, the prediction re- 436

sults of StAR show serious asymmetry, which con- 437

tradicts the independence and completeness of a 438

text representing a triplet. Our work developed 439

a model to balance the roles played by the head 440

and tail entities via adding another dual encoder 441

into the original StAR model, and alleviated the 442

asymmetry problem in KGC. 443

6 Experiment 444

6.1 Experiment Setup 445

Datasets We make evaluations on three public 446

KG datasets with the summary statistics shown 447

in Table 2. i) WN18RR: a link prediction dataset 448

created from the WordNet, which is ensured that 449

the evaluation dataset does not have inverse rela- 450

tion test leakage (Dettmers et al., 2018); ii) FB15k- 451

237: a set of Freebase entity pairs which contains 452

knowledge base relation triplets and textual men- 453

tions, in which the inverse relations of original 454

dataset are removed (Xie et al., 2016); iii) UMLS: 455

a compendium of many controlled vocabularies in 456

the biomedical sciences that consists of knowledge 457

sources and a set of software tools. 458

Baselines We compare our model with several 459

state-of-the-art models:, covering the latest mod- 460

els that are the best in terms of various indica- 461

tors. These include TransE (Bordes et al., 2013), 462

DisMult (Yang et al., 2015), CompIEx (Trouillon 463

et al., 2016), KBGAN (Cai and Wang, 2018), R- 464

GCN (Schlichtkrull et al., 2018), ConvE (Dettmers 465

et al., 2018), convKB (Nguyen et al., 2018), KBAT 466

(Nathani et al., 2019), CapsE (Nguyen et al., 2019), 467

QuatE (Zhang et al., 2019), RotatE (Sun et al., 468

2019), TuckER (Balazevic et al., 2019), AttH 469

(Chami et al., 2020), KG-BERT (Yao et al., 2019), 470

and StAR (Wang et al., 2021). 471
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Models
WN18RR FB15k-237 UMLS

MR↓ MRR↑ Hits↑
MR↓ MRR↑ Hits↑

MR↓ MRR↑ Hits↑
@ 1 @ 3 @ 10 @ 1 @ 3 @ 10 @ 1 @ 3 @ 10

Graph Embedding Approch

TransE△ 2300 .243 .043 .441 .532 323 .279 .198 .376 .441 1.840 - - - .989
DisMult△ 7000 .444 .412 .470 .504 512 .281 .199 .301 .446 5.520 - - - .846
CompIEx△ 7882 .449 .409 .469 .530 546 .278 .194 .297 .450 2.590 - - - .967
KBGAN - .215 - - .469 - .277 - - .458 - - - - -
R-GCN△ 6700 .123 .080 .137 .207 600 .164 .100 .181 .300 - - - - -
ConvE△ 4464 .456 .419 .470 .531 245 .312 .225 .341 .497 1.510 - - - .990
ConvKB♢ 3433 .249 - - .524 309 .243 - - .421 - - - - -
KBAT♢ 1921 .412 - - .554 270 .157 - - .331 - - - - -
CapsE♢ 718 .415 - - .559 403 .150 - - .356 - - - - -
QuatE 3472 .481 .436 .500 .564 176 .311 .221 .342 .495 - - - - -
RotatE 3340 .476 .428 .492 .571 177 .338 .241 .375 .533 - - - - -
TuckER - .470 .443* .482 .526 - .358* .266* .394* .544* - - - - -
AttH - .486* .443* .499 .573 - .348 .252 .384 .540 - - - - -

Text Encoding Approch

KG-BERT 97 .216 .041 .302 .524 153 - - - .420 1.550 .870 .790 .937 .990
StAR 54* .411 .264 .491 .709 117* .288 .193 .315 .481 1.970 .836 .729 .933 .991
Ours 54* .412 .235 .517* .750* 119 .291 .197 .321 .484 1.508* .881* .793* .964* .992*

Table 3: Comparison of the proposed method against baseline models. △ marked results are reported by (Nathani
et al., 2019), ♢ marked results are re-evaluated by (Sun et al., 2020), StAR is re-implemented by ourselves using its
public code and the others are taken from the original papers. Best results for each genre are marked in bold and the
started numbers denote the state-of-the-art performance. ↑ means higher is better, and ↓ versa.

Datasets Method
Hit@1↑ Hit@3↑ Hit@10↑ MMR↑ MR↓

left right diff left right diff left right diff left right diff left right diff

WN18RR
star .231 .297 .066 .456 .526 .070 .665 .751 .086 .368 .449 .081 57.549 51.098 6.451
ours .208 .264 .056 .483 .551 .068 .712 .783 .071 .382 .441 .059 53.206 49.194 4.012

FB15K-237
star .111 .275 .164 .218 .413 .195 .389 .573 .184 .201 .375 .174 140.266 93.734 46.532
ours .121 .273 .152 .229 .413 .184 .394 .573 .179 .218 .376 .158 135.037 94.965 40.072

UMLS
star .770 .689 .081 .969 .897 .072 .993 .968 .025 .870 .802 .068 1.459 2.481 1.022
ours .809 .778 .031 .982 .946 .036 .997 .986 .011 .897 .865 .032 1.298 1.718 .420

Table 4: Comparison of the asymmetry alleviation degree on the UMLS dataset. “Left” means the tail-to-head
prediction, i.e., (?, r, t) → h, “right” means the head-to-tail prediction, i.e., (h, r, ?) → t and “diff” means the
performance difference of bidirectional predictions.

Evaluation Protocol For the sake of fairness,472

we follow the evaluation protocol in (Sun et al.,473

2020). Particularly, given a test triplet, we first474

corrupt its head or tail using other entities in the KG.475

Then the trained model ranks ground triplet over476

the corrupted ones according to their scores with477

“filtered” setting (Bordes et al., 2013). we adopt478

three metrics: Mean Rank (MR), Mean Reciprocal479

Rank (MRR) and Hits at N (Hit@N with N = 1, 3,480

10) as evaluation criteria separately.481

Implementation Details In our experiment, the482

Transformer encoder is a 12-layer, 12-head, 768-483

dimensional RoBERTa module (Liu et al., 2019)484

initialized from its public pre-trained parameters.485

The input text data is a truncated word sequence486

with the length of 32, 128, 16 for the WN18RR,487

FB15K-237 and UMLS, respectively. The tem-488

perature coefficient of contrastive loss in (7), the 489

number of negative samples in (8) and the margin 490

coefficient in (10) are fixed to 0.05, 1 and 5, respec- 491

tively. We train the model using Adam optimizer 492

(Kingma and Ba, 2015) with the learning rate of 493

2e − 5 and the dropout rate of 0.1. According to 494

the performance observed on the validation set, we 495

choose the batch size from {16, 32} and the epochs 496

for each training stage from {5, 10, 20}, with the 497

best best setting used for evaluation on the test set. 498

6.2 Performance and Analysis 499

Main Results The performance of our model and 500

competitive baselines are illustrated in Table 3. In 501

can be observed that the proposed model achieves 502

superior performance on all datasets and surpasses 503

state-of-art models on most metrics. Especially 504

in terms of MR, which is an extremly important 505
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Distance Hit@1↑ Hit@3↑ Hit@10↑ MRR↑ MR↓

L2 0.397 0.663 0.836 0.561 6.547

Cosine 0.437 0.674 0.856 0.583 6.691

CL 0.793 0.964 0.992 0.881 1.508

Table 5: Effect of using different semantic alignment
strategies on the UMLS dataset.

indicator in information retrieval, the significant506

performance gains obtained in this metric demon-507

strate the superiority of our model, indicating that508

better semantic information can be extracted by our509

model. Besides, on UMLS dataset, our model con-510

sistently outperforms baselines on all metrics, and511

on WN18RR, our model surpasses all other meth-512

ods by a large margin in terms of Hits@10. These513

remarkable gratuities strongly corroborate the ben-514

efit of our contrastive-based asymmetry alleviation515

framework. When examining the performance on516

the FB15k-237 dataset, we find that all text-based517

approaches inferior than graph-based ones. This518

phenomenon is consistent with experiment results519

in previous works (Wang et al., 2021). In spite of520

that, thanks to the introduction of asymmetry al-521

leviation mechanism, our model still remarkably522

outperforms other test embedding methods, like523

KG-BERT and StAR.524

Asymmetry Alleviation Analysis The asymme-525

try issue is manifested in that, for the same test526

triplet, the effect of prediction from head to tail, i.e.,527

(h, r, ?) → t, and prediction from tail to head, i.e.,528

(?, r, t) → h, varies significantly. To test whether529

our model can alleviate this problem, we explicitly530

carry out experiments in the two predicted direc-531

tions. The statistical results on all metrics and532

datasets are shown in Table 4. It can be seen that,533

compared with StAR, our model achieves smaller534

performance gap between predictions in two direc-535

tions. Especially in the UMLS dataset, our model536

reduces the performance gap by a factor of two.537

This result clearly shows that our model alleviates538

the problem of asymmetry in prediction to a certain539

extent, and thus shows better performance overall.540

Impact of Semantics Alignment The semantic541

alignment mechanism plays an important role in542

our model architecture. To investigate the influence543

of different alignment methods, we further exper-544

iment with two different distance measures: the545

L2 distance and cosine distance. As seen form Ta-546

ble 5, contrastive loss achieves better performance547

Method Hit@1↑ Hit@3↑ Hit@10↑ MRR↑ MR↓

1
Random .713 .899 .975 .818 1.941

Hard .719 .903 .984 .829 1.830

3
Random .781 .947 .980 .852 1.613

Hard .794 .952 .989 .876 1.549

5
Random .789 .951 .991 .863 1.512

Hard .793 .964 .992 .881 1.508

Table 6: Comparison of using random and hard nega-
tive samples on the UMLS dataset. (1, 3, 5) means the
number of negative samples.

than the other two measures. This is partially be- 548

cause, the L2 and cosine distance only impose the 549

two type of representations (it i.e., u and v) to be 550

closed, but not push them away from the negative 551

samples, which is inclined to make all represen- 552

tations collapse in a single compact hyperspace 553

and result in indistinguishable and meaningless 554

embeddings. However, by simultaneously requir- 555

ing the alignment and uniformity of the generated 556

features (Wang and Isola, 2020), contrastive loss 557

successfully aligns the semantics of two types of 558

representations and thus improves the performance. 559

Effect of Hard Negative Sampling To evaluate 560

the effect of the hard negative sampling strategy, we 561

compare the model performance of using random 562

and hard negative samples. As shown in Table 6, 563

under the premise of the same number of negative 564

samples, the performance of using hard negative 565

samples are better than that of using random sam- 566

ples. Besides, we find that increasing the number 567

of negative samples could introduce additional per- 568

formance gains. However, large number would sig- 569

nificantly improve the computational complexity. 570

Based on the trade-off between computational cost 571

and performance benefits, we find 5 is a suitable 572

number for negative sampling. 573

7 Conclusion 574

We proposed a method for knowledge graph com- 575

pletion. Specifically, we introduced a dual Trans- 576

former encoding framework combined with a se- 577

mantics alignment mechanism to alleviate the 578

asymmetry problem of StAR. To enhance model 579

ability, a negative sampling strategy was further de- 580

veloped and justified theoretically. Extensive eval- 581

uations demonstrated that our model significantly 582

outperforms baseline methods and effectively re- 583

duces the performance gaps of bidirectional predic- 584

tion. 585
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A Appendix792

A.1 Definition of H−793

In section 4.1, we propose to draw the negative sam-794

ples form a hard domain H−. Here, we provide the795

rigid definition of H−. Specifically, given a triplet796

(h, r, t), its hard negative samples can be drew from797

the set H− = H−
h ∪H−

t , with the definition of798

H−
h =

{
(h′, r, t)

∣∣h′∈E ∧ (h′, r, t)∈D−
h ∩ T+

h

}
,799

H−
t =

{
(h, r, t′)

∣∣t′∈E ∧ (h, r, t′)∈D−
t ∩ T+

t

}
,800

where T+
h and T+

t are respectively defined as801

T+
h =

{
(h′, r, t)

∣∣∃t′∈E , h′∈E ∧ (h′, r, t′)∈D+
}
,802

T+
t =

{
(h, r, t′)

∣∣∃h′∈E , t′∈E ∧ (h′, r, t′)∈D+
}
.803

Roughly speaking, the hard negative sample for a804

given triplet (h, r, t) is defined as a corrupt triplet805

(h′, r, t) ∈ D− (or (h, r, t′) ∈ D−), in which the806

substituted entity h′ (or t′) should be related to one807

entity in the knowledge graph G with relation r.808

A.2 Proof of Proposition 4.1809

To train our model f(h, r, t), we can define an810

energy-based model as811

p(h, r, t) =
f(h, r, t)

Z
,812

where Z=
∑

h′̸=hf(h
′, r, t)+

∑
t′̸=tf(h, r, t

′)) de-813

notes the partition function, and then maximize the814

log likelihood of p(h, r, t). Next, we show that the815

training objective in (8) is equivalent to the maxi-816

mum likelihood estimation.817

To facilitate discussion, we denote ϕ ≜ (h, r, t)818

in the following. We have819

log p(ϕ) = log f(ϕ)− logZ820

= log f(ϕ)− Eq(ϕ)[log f(ϕ)]821

−H(q(ϕ))−KL(q||p)822

≥ log f(ϕ)− Eq(ϕ)[log f(ϕ)], (12)823

where H(·) denotes the Shannon entropy and824

KL(·||·) is the Kullback–Leibler divergence. The825

last inequality holds since the entropy and KL di-826

vergence are both non-negative for discrete distri-827

bution. By constricting the support set of q(ϕ) to828

be D−, we have829

argmax
θ,ψ

log p ⇔ argmin
θ,ψ

LSF.830

Next, we show that the inequality in Proposition831

4.1 holds. We first denote q(ϕ−) with the support832

set on D− as qD−(ϕ), and qH−(ϕ) denotes the neg- 833

ative distribution over H−. Then according to the 834

(12), we have 835

log p(ϕ)≥ log f(ϕ)−EqH− [log f(ϕ)] ≜ −LSF(qH−). 836

w.l.t.g., since qD−(ϕ) is more widely uniform than 837

qH−(ϕ), thereby H(qD−) ≥ H(qH−). Besides, 838

since the triplet in H− is harder than that in D−, 839

it is reasonable to assume the score of entities 840

in H− is higher than those in D−. So we have 841

KL(qH− ||p) ≤ KL(qD− ||p). According to (12), 842

the following inequality holds 843

− LSF(qD−) ≜ log f(ϕ)−EqD−
[log f(ϕ)] 844

≤ log f(ϕ)−EqH− [log f(ϕ)] ≜ −LSF(qH−). 845

Thus, we end up with our proof at 846

log p ≥ −LSF(qH−) ≥ −LSF(qD−). 847

This inequality shows that, compared with the ran- 848

dom negatives, the hard negative sampling strategy 849

has a tighter lower bound and thus achieves a better 850

estimation of the likelihood. 851

A.3 Case Study 852

In Table 7, we present some ranking cases of the 853

given test triplets on the UMLS dataset. It can be 854

seen that our model works well in both head-to- 855

tail and tail-to-head predictions. However, StAR is 856

generally good at unidirectional prediction but per- 857

forms worse at reverse prediction. This observation 858

further confirms the effectiveness of our asymmetry 859

alleviation mechanism. 860
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Test triplet Predict StAR Ours

(receptor,
isa,

substance)

tail-to-head

1. receptor
2. body_part_organ_or_organ_component
3. medical_device
4. regulation_or_law

1. receptor
2. medical_device
3. drug_delivery_device
4. clinical_drug

head-to-tail

1. mental_process
2. immunologic_factor
3. vitamin
9. substance

1. substance
2. chemical_viewed_structurally
3. indicator_reagent_or_diagnostic_aid
4. organic_chemical

(cell,
location_of,

therapeutic_or_preventive_procedure)

tail-to-head

1. cell
2. gene_or_genome
3. fully_formed_anatomical_structure
4. embryonic_structure

1. cell
2. gene_or_genome
3. fully_formed_anatomical_structure
4. embryonic_structure

head-to-tail

1. natural_phenomenon_or_process
2. clinical_attribute
3. organism_attribute
5. therapeutic_or_preventive_procedure

1. natural_phenomenon_or_process
2. therapeutic_or_preventive_procedure
3. alga
4. fish

(steroid,
interacts_with,

eicosanoid)

tail-to-head

1. chemical_viewed_functionally
2. element_ion_or_isotope
3. inorganic_chemical
4. steroid

1. eicosanoid
2. steroid
3. chemical_viewed_functionally
4.inorganic_chemical

head-to-tail

1. body_substance
2. lipid
3. biomedical_occupation_or_discipline
11. eicosanoid

1. steroid
2. eicosanoid
3. lipid
4. carbohydrate

(acquired_abnormality,
co-occurs_with,

injury_or_poisoning)

tail-to-head

1. congenital_abnormality
2. acquired_abnormality
3. anatomical_abnormality
4. mental_process

1. congenital_abnormality
2. acquired_abnormality
3. anatomical_abnormality
4. injury_or_poisoning

head-to-tail

1. biomedical_occupation_or_discipline
2. experimental_model_of_disease
3. congenital_abnormality
10. injury_or_poisoning

1. acquired_abnormality
2. congenital_abnormality
3. injury_or_poisoning
4. experimental_model_of_disease

(experimental_model_of_disease,
co-occurs_with,

anatomical_abnormality)

tail-to-head

1. experimental_model_of_disease
2. anatomical_abnormality
3. injury_or_poisoning
4. professional_or_occupational_group

1. experimental_model_of_disease
2. anatomical_abnormality
3. injury_or_poisoning
4. sign_or_symptom

head-to-tail

1. experimental_model_of_disease
2. disease_or_syndrome
3. neoplastic_process
6. anatomical_abnormality

1. anatomical_abnormality
2. experimental_model_of_disease
3. neoplastic_process
4. disease_or_syndrome

(laboratory_procedure,
assesses_effect_of,

element_ion_or_isotope)

tail-to-head

1. laboratory_procedure
2. molecular_biology_research_technique
3. research_activity
4. therapeutic_or_preventive_procedure

1. laboratory_procedure
2. professional_or_occupational_group
3. professional_or_occupational_group
4. laboratory_or_test_result

head-to-tail

1. body_substance
2. clinical_attribute
3. organism_attribute
15. element_ion_or_isotope

1. body_substance
2. element_ion_or_isotope
3. quantitative_concept
4. clinical_attribute

(laboratory_or_test_result,
co-occurs_with,

sign_or_symptom)

tail-to-head

1. professional_or_occupational_group
2. congenital_abnormality
3. disease_or_syndrome
19. laboratory_or_test_result

1. laboratory_or_test_result
2. sign_or_symptom
3. congenital_abnormality
4. acquired_abnormality

head-to-tail

1. biomedical_occupation_or_discipline
2. occupation_or_discipline
3. intellectual_product
4. sign_or_symptom

1. sign_or_symptom
2. conceptual_entity
3. biomedical_occupation_or_discipline
4. occupation_or_discipline

Table 7: Cases of the asymmetry alleviation on the UMLS dataset.
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