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Abstract

Semantic hashing is an effective technique for
large-scale information retrieval because of its
fast speed and small memory footprint. It is
known that both document content and neigh-
borhood information are instrumental in gen-
erating high-quality hash codes. To leverage
these two types of information simultaneously,
we propose to place the problem under the
framework of generative models and treat the
neighborhood information as another observa-
tion, in addition to document content, which
makes the key problem reduced to how to
model the neighborhood information well. To
model it, we first view the neighborhood as a
collection of independent edges and propose to
model them with Bernoulli distributions. How-
ever, the independent edge assumption makes
the model not able to capture the global neigh-
borhood structure. To alleviate this issue, a
vertex-based neighborhood model is further
developed by decomposing a graph into a set
of subgraphs, with the global neighborhood
structure of each subgraph modeled simulta-
neously by a conditional distribution over all
vertices. When the vertex-based neighborhood
model is integrated with existing generative
hashing models, significant performance gains
are observed compared to current state-of-the-
art models on three publicly available datasets.

1 Introduction

Similarity search aims to find the most similar
items to the query from a large dataset and enjoys
extensive applications such as plagiarism analy-
sis (Stein et al., 2007), image retrieval (Jing and
Baluja, 2008) and collaborative filtering (Koren,
2008) etc. However, since the original features
in applications are mostly real-valued, it is com-
putationally expensive to evaluate the similarity
between huge amount of pairs of items, and not
friendly to storage, neither. In the area of docu-
ment retrieval, semantic hashing has been widely
used to tackle this problem by transforming the

real-valued feature representations of documents
into compact and informative binary codes, which
enables us to find out similar documents with high
speed and small memory footprint.

To generate high-quality hash codes that pre-
serve the semantic information of documents, ex-
tensive efforts have been made. To effectively lever-
age the ubiquitous unlabeled data, using deep gen-
erative models to achieve unsupervised semantic
hashing has attracted considerable attentions in re-
cent years (Chaidaroon and Fang, 2017; Shen et al.,
2018; Hansen et al., 2020; Ou et al., 2021). By mod-
eling the documents contents (features) with a vari-
ational autoencoder (VAE) (Kingma and Welling,
2013), the obtained inference network is used to
produce high-quality hash codes that preserve the
semantic information of documents successfully.

In addition to document content (features),
neighborhood information that describes the ad-
jacency of different documents is also available
under some circumstances. In practice, the neigh-
borhood information could be collected along with
the documents, but more often it is estimated from
the documents through post-processing, e.g., esti-
mated according to the cosine similarities of TFIDF
features. Neighborhood information is known to
contain rich document similarity information that
is useful for high-quality hash code generation.
For instances, the locality-preserving hashing (He
et al., 2004; Zhao et al., 2014) and spectral hash-
ing (Weiss et al., 2009; Li et al., 2012) proposed
to generate hash codes by decomposing the adja-
cency matrix estimated from document features. In
addition to the neighborhood information, the orig-
inal document features are also instrumental for
hash codes. To generate high-quality hash codes,
the better way should be to leverage both types of
information simultaneously. Based on this idea,
(Chaidaroon et al., 2018; Hansen et al., 2020) pro-
posed to encourage the hash code of a document to
reconstruct all adjacent documents. However, since



adjacent documents do not necessarily contain sim-
ilar content, it is not a good way to exploit the
neighborhood information by requiring all adjacent
documents to be reconstructed from one hash code.
Recently, (Ou et al., 2021) proposed to represent
the neighborhood information by a Gaussian distri-
bution and then use it as a prior distribution for the
generative model of document content. The model
achieved a principled integration of the two types of
heterogeneous information under one model. How-
ever, considering that the representational ability
of a Gaussian distribution is known to be very lim-
ited, using a Gaussian distribution to represent the
complicated neighborhood may cause too much
information to be lost.

In this paper, to simultaneously leverage the doc-
ument content and neighborhood information, we
propose to treat the neighborhood information as
another kind of observation, just like the docu-
ment content. To model the neighborhood infor-
mation, we first view the neighborhood graph as
a collection of independent edges and then pro-
pose to model the neighborhood by modeling the
edges with a set of independent Bernoulli distribu-
tions. However, the independent-edge assumption
makes the method only focus on modeling doc-
ument pairs, while neglecting the overall global
neighborhood structures. To alleviate this issue, we
then propose to model the neighborhood informa-
tion from the perspective of vertices. Specifically,
we propose to decompose the full graph into a set
of subgraphs and then model the global adjacent
structure of a subgraph by a conditional distribu-
tion over vertices. Since every subgraph contains
all documents and a part of edges, the vertex-based
neighborhood model is certainly better at capturing
the global neighborhood structure than the edge-
based model, which only focuses on modeling doc-
ument pairs. Experimental results on three public
datasets demonstrate that when the proposed vertex-
based neighborhood model is integrated with exist-
ing generative semantic hashing models, significant
performance gains can be observed compared to
the current state-of-the-art methods.

2 Preliminaries

To preserve the semantic information of documents
in hash codes, a widely used approach is to model
the documents by a generative model and then ex-
tract the hash codes from its latent representations.
Specifically, given a corpus X' = {z;} |, genera-

tive hashing methods (Chaidaroon and Fang, 2017;
Ou et al., 2021) seek to model a document x; by a
latent-variable model as

p(w4, 2:) = po(xilzi)p(2:), (D

where p(z;) = N (z;0, 1) is the prior distribution
of latent variable z; € R? and py(x;|2;) is the
decoder. In semantic hashing, it is often defined as

po(xilzs) = T11%) po(wij=:), where
a exp(ziTEwij + b))

po(wij|z;) v ;
W exp( By, + by)
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and w;; denoting a one-hot vector representing the
j-th word of document z;; E € RVl is a learn-
able embedding matrix connecting latent code z;
and one-hot representation of word wj;; and b; is
the bias. By assuming independence among differ-
ent documents, the corpus X is modeled as

p(X,Z) ZPG(X\Z)ZD(Z)» (3)

where pg(X|Z) = 1Y, po(zi|z) and p(Z) =
[T, p(z:) with p(z;) = N(2:;0,14); and Z £
[21, 22, ..., zv|. The model can be trained by max-
imizing the evidence lower bound (ELBO) of the
log-likelihood log p(&X'). After training, the hash
code of a document = can be obtained from its
corresponding representation in the latent space.

Existing Neighborhood Information Construc-
tion and Integration Methods Under some cir-
cumstances, in addition to the textual data {x; }}¥,,
it is also possible to have the neighborhood data
available during the training. In practice, the neigh-
borhood data can be collected together with the doc-
uments. But more often, it is constructed from the
collected documents through some post-processing
methods. For instances, in (Hansen et al., 2020;
Ou et al., 2021), a connection graph G(V,€) is
constructed for documents based on the cosine
similarities of their BM or TFIDF features, where
YV ={1,2,---, N} and &£ denote the vertices (doc-
uments) and edges, respectively. Specifically, in
(Ou et al., 2021), each document is considered to
be connected to its top K most similar documents,
that is,

E2{(i,4)|j € top K similar docs of doc i}. (4)

In this paper, we follow to utilize the same neigh-
borhood graph construction method.



Due to the richness of semantic-similarity infor-
mation contained in the neighborhood data G, it
has been proposed to integrate it with the textual
data to produce higher-quality hash codes. To this
end, PairRec (Hansen et al., 2020) proposed to en-
force the hash code of a document to reconstruct
its neighboring documents, too, in addition to the
original document itself. But for the task of hash-
ing, enforcing a hash code to reconstruct all neigh-
boring documents is not reasonable since adjacent
documents do not necessarily contain similar con-
tent, but only imply the same topic or category is
shared. To better utilize the neighborhood informa-
tion, SNUH (Ou et al., 2021) proposed to replace
the independent prior p(Z) = [[~, N(2i;0, I)
with a neighborhood-informed Gaussian prior dis-
tribution p(Z) = N(Z;0,X¢), where ¥ denotes
a Nd x Nd covariance matrix that specifies how
different documents are correlated, and is derived
from the neighborhood graph GG. Although SNUH
can unify the textual and neighborhood information
under one model, representing the whole neighbor-
hood information solely by a Gaussian prior is still
too restrictive, especially in consideration of the
limited representational ability of Gaussian distri-
butions.

3 Neighborhood Information Modeling
Methods

To leverage the neighborhood information, instead
of representing it as a prior distribution as in SNUH
(Ou et al., 2021), we view it as another type of ob-
served data, just like the textual data X' = {z;} ;.
Specifically, we simultaneously model the corpus
X and neighborhood data G by the following joint
model

p(X, G, Z) = po(X|2)p(G|Z)p(Z),  (5)

where pp(X|Z) = [I, po(ai|z) and p(Z) =
Hfil p(zi) = Hf\il N (z;0,1,) are the decoder
of textual data and prior distribution, respectively,
which are the same as previous models in (3); and
p(G|Z) denotes the decoder of neighborhood data,
which will be elaborated detailedly in subsequent
sections. Obviously, by viewing the neighborhood
data as another observation, in addition to unifying
the two types of information under a model, we
can also resort to flexible decoders to capture the
complex neighborhood information among differ-
ent documents.

3.1 Modeling Neighborhood from the
Perspective of Edges

The simplest way to model the neighborhood infor-
mation is to view it as a collection of independent
connections (edges) and disconnections (no edge).
Under this perspective, the neighborhood informa-
tion can be simply modeled as

p(G12) = ] pleij = 1]z 2)
(i,7)€E

X H p(ei; = 0|z, 25), (6)
(i,5)e€

where € is the complement set of £, i.e., the set con-
taining all pairs of unconnected vertices in graph G
and p(e;;|zi, z;) is a Bernoulli distribution, which
is used to indicate whether vertex ¢ and j are con-
nected. In this paper, this Bernoulli distribution is
defined in the form

p(eij = 1‘2’1',,2]') £ o ((ZZTZ] + b)/T) 5 (7)

where 7 is a scaling factor, b is the bias term; o (-)
is the sigmoid function.

From (7), we can see that if there is an edge
between document ¢ and j (that is, e;; = 1), the
neighborhood model will enforce their latent rep-
resentations z; and z; to be similar. Otherwise, z;
and z; will be pushed away from each other. In
this way, the neighborhood information in Gz, along
with the textual content X, can be incorporated into
the latent representations Z. However, when we
model the neighborhood information using (6), it
is implicitly assumed that for any two documents
(i,7) € &, they must be dissimilar. But as we con-
struct the graph G like (4), to ensure the accuracy
of added edges, each document is only connected
to its top K most similar documents, while having
the remaining ones unconnected. Obviously, it is
unwise to require all document pairs (i,j) € &
to output dissimilar latent representations because
many of them may share similar semantic informa-
tion. To address this issue, we propose to require
only a portion of document pairs in € to output
dissimilar latent representations. To this end, we
define a set & that contains the most dissimilar
documents pairs, that is,

Eo={(i,7)|j €bottom K’ similar docs of i}, (8)

where the similarity is evaluated according to the
documents’ TFIDF features. Then, only the docu-
ment pairs from &y are encouraged to output dissim-
ilar latent representation, that is, the neighborhood
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Figure 1: Example to demonstrate graph decomposi-
tion. The yellow vertices are the center vertices of sub-
graphs.

model is written as p(G|Z) = H(m)eg pleij =
1zi, 2;) % [ j)es, P(€ij = 0lzi, 2j), or equiva-
lently

p(G12) =[]
(4,9)€E

< [[ =0 (2 +0)/7)). ©

(Z7J) E50

o ((zZTz] + b)/T)

Moreover, under the most extreme case, we can set
&y = (), which means not to consider any uncon-
nected document pairs.

3.2 Modeling Neighborhood from the
Perspective of Vertices

In this section, we propose another way to model
the neighborhood information from the perspective
of vertices. Specifically, for a neighborhood graph
G(V, ), we decompose it into into || subgraphs
G;(V,&) fori=1,2,---,|V|, with the subgraph
G? describing the connection structure of vertex
i to the rest vertices V\i. An example of graph
decomposition is illustrated in Fig. 1, in which the
neighborhood graph G is decomposed into five sub-
graphs. With the decomposition, the neighborhood
information in G is equivalently represented in the
set of subgraphs G7,G5, - -+, G} |- Therefore, to
model the neighborhood 1nformat10n G given Z,
we can model its subgraphs instead

Hp G3|7),

%

p(G|Z) & (10)

where p(G7|Z) is the model of neighborhood in-
formation of vertex 7. For the subgraph G¥, we do

not model it as a collection of independent distri-
butions over edges, as done in Section 3.1. Instead,
we model it as a set of conditional independent
distributions over vertices, that is,

II plw=312,v=1),

JEN;

p(G2|Z) = (11)

where N; £ {j|(i,j) € £} denotes the neigh-
bors of vertex 7; and the conditional distribution
p(ulZ,v) is defined as

exp(zl 2, /7)

plulZ,v) = ZkeV\v exp(z 2,/7)’

12)

where u € V\v. It can be easily seen that p(u|Z, v)
describes the probability of vertex u being a neigh-
bor of vertex v as vertex v is given. By substituting
(11) and (12) into (10), we obtain the final model
of neighborhood information as

exp(] 2;/T)

p(G12) = ZkEV\z exp(z] z1,/T)

13)

(4,9)€E

It can be seen from (13) that if document ¢ and j
are adjacent (i.e., (i, j) € &), their latent represen-
tations z; and z; will be encouraged to be similar
exp(z] 2 /7)
evvi exp(z] 21 /T)
of observing this adjacency. Thus, by using this
model, the neighborhood information can be in-
corporated into the latent representation learning
process smoothly. Note that the vertex-based neigh-
borhood model does not explicitly contain terms
concerning unconnected document pairs (i, j) € £
as in edge-based model (6). This is because in the
vertex-based model, since the summation of proba-
bilities > ;¢ ; P(j|Z, 1) = 1 always holds, if we
try to increase the probabilies for j € N;, the sum-
mation of probabilities } . 57, p(j|Z, ) regarding
unconnected pairs will be decreased automatically,
where N; represents the set of unconnected ver-
tices of vertex ¢. Moreover, since only the summa-
tion Y., P(j|Z, ) is encouraged to decrease, it
is still possible to allow the probabilities of some
unconnected pairs to be large, which partially alle-
viates the issue that not all unconnected documents
have dissimilar semantic information.

Compared with the edge-based model, a unique
characteristic of the vertex-based neighborhood
model is that it is able to perceive the global
neighborhood information when dealing with a
pair of documents (i,j) € £. That is because

so as to increase the probability >
k




its probability term corresponding to a pair of doc-
uments depends on the latent representations of
all documents due to the existence of denomina-
tor D ey exp(z! z./7). Butin the edge-based
model, we can see that the probability term corre-
sponding to a pair of documents is only determined
by latent representations of the two relevant docu-
ments. The global awareness of the vertex-based
model makes it more advantageous in capturing the
global neighborhood structure, as corroborated by
later empirical experimental results.

4 Training

To train the neighborhood information inte-
grated hashing model (5), the objective is to
maximize the log-likelihood logp(X,G) =
log [ pe(X|Z)p(G|Z)p(Z)dZ. But due to the in-
tractability of computing exact log-likelihood, we
instead maximize its lower bound (ELBO) under
the framework of variational inference

L=Eq,(zx)log po(¥|2)]-K Ligy(2]X)||p(Z))
Lx Lkl
+Ey, (z10)log p(G|Z)],
Lg

(14)

where ¢4(Z|X) is the variational posterior. In this
paper, we assume ¢ (Z|X’) to maintain a factorized
Gaussian distribution form, that is, g4(Z|X) £

Hi]\il 4o (2i|x;) with

qs(zil7i) = N (233 s, diag(B7)),  (15)
where 11; € R? and 53 € R? denote the mean and
variance vectors, respectively; and diag(-) means
the diagonalization function. In our experiments,
pi and 3?7 are the outputs of two neural networks
that take x; as input and are parameterized by ¢. To
make the latent representation z; more compatible
with binary hash codes, we confine the range of ;
to the interval (0, 1) by using a sigmoid function at
the end of the neural network.

By noticing py(X|Z) = Hf\;1 po(xi|z;) and
p(Z) = TIY, N(2;0,1;), combining with the
factorized Gaussian assumption on ¢4(Z|X), the
expressions for Lx and Lk, terms in (14) are ex-
actly the same as those in previous generative se-
mantic models, which can be found in Appendix
A.1. As for the neighborhood-relevant term L, its
expressions w.r.t. the edge-based and vertex-based

neighborhood models are

g =37 logo (25 +0)/7)
(3,5)€E
+ 3 log (1—0 ((72+b) /7)) . (16)
(i’j)ego
T 3. 5T 3
=y |22 —t0g| Sexp(CLE) || (17)
(i.4)e€ T kEV\i T

where z; = p; + € - §; with € being d-dimensional
standard Gaussian noise, which is the reparameter-
ization trick (Kingma and Welling, 2013), a well-
known technique that is widely used for expecta-
tion estimation. By replacing L in (14) with either
52?9 “or L%, the ELBO £ can be optimized with
SGD algorithms. Note that at each iteration, we do
not need to consider all document pairs (i, j) € €
simultaneously, but only need to use a minibatch
of them to reduce the computation cost, thanks to
the factorized form of L9 and L™ over the
document pairs (i, j) € €. After training, the hash
code of a document x; can be obtained by binariz-
ing its posterior mean p; with a threshold, e.g., 0.5
(Chaidaroon and Fang, 2017).

Efficient Training for Vertex-Based Neighbor-
hood Model When we optimize the ELBO with
L%, we can use minibatchs from & to replace
the full batch £ to reduce the computational cost
at every iteration. However, from (17), it can be
seen that there is another summation over individ-
ual documents V\i inside the log(-) function. This
means that if we want to compute the gradient of
L2 w.r.t. a pair of documents (4, j) € £, we have
to take all documents in the training dataset into
account. This makes using minibatchs from £ to re-
duce complexity meaningless because we still need
to consider all documents for every iteration. In
order to effectively reduce the training complexity,
we can further approximate L2 by LY, where

rvert__ Z'LT’gJ ng’gk
S Iy EEE [ gEE) |
iEVIEN; ke{jIus;
ZvGert(i)

and S; is a subset randomly drawn from V\i. Es-
sentially, this method is to use summation over
a small subset S to replace the summation over
the set V\i. When the denominator of a softmax



function contains a huge amount of terms, using
a small proportion of them to approximate it dur-
ing the training is a technique called negative sam-
pling (NS), which is widely used in the training
of word2vec (Mikolov et al., 2013), network em-
bedding, etc., and has been found great success.
Inspired by the theories of noise contrastive estima-
tion (NCE) (Gutmann and Hyvérinen, 2010) and
InfoNCE (van den Oord et al., 2019), we justify
the negative-sampling approximation in a more rig-
orous way below.

Proposition 4.1. Define a function LU (i) £

Sen: <S(Z:Zj) —log (Zkev\i exp(@)))

and its NS approximation dert(i) =

Zje/\fi(@ —log (Zke{j}u&; exp(%))).
If the score function s(z;,zj) is sufficiently
expressive, maximizing Ege”(i) is equivalent to
maximize LY () in the sense that at their optimal
points, both of them can have the distribution

ps(ulZ,v) = Zkeesi(i?(,szél/, 2) 77 equal to the
1

same distribution P(u|v), where P(ulv) = o]
foru € N, and 0 otherwise.

Proof. Please refer to the Appendix A.2. 0

Obviously, if we set s(z;,2;) = zIzj, then
LY (i) and LY (i) are reduced to LY7(7) £

z.sz 2X 2z
e (L2 o (SuevesplL2)))
LU (5), respectively. Thus, maximizing the NS
surrogate ng” can be approximately viewed as
maximizing the original L.

To facilitate discussion, we term the edge-
based and vertex-based models as Neighborhood
Semantic Hashing from Edges (NbrSHg) and
Neighborhood Semantic Hashing from Vertices
(NbrSHy/ ) respectively. Additionally, NbrSHy,
without NS approximation is termed as NbrSH‘Ii””.

5 Related Works

To generate high-quality hash codes with unsuper-
vised hashing, extensive efforts have been made.
VDSH (Chaidaroon and Fang, 2017) firstly intro-
duced the variational autoencoder (VAE) (Kingma
and Welling, 2013) into semantic hashing. To
tackle the drawbacks brought by the two-stage
training, NASH (Shen et al., 2018) replaced the
Gaussian prior with Bernoulli prior and utilized the
straight-through technique (Bengio et al., 2013) to
achieve end-to-end training. Differing from mod-
eling the documents contents with a generative

model, AMMI (Stratos and Wiseman, 2020) sought
to generate high-quality hash codes by maximiz-
ing the mutual information between documents
and hash codes. Apart from the aforementioned
semantic-based models, locality-preserving hash-
ing (He et al., 2004; Zhao et al., 2014) and spectral
hashing (Weiss et al., 2009; Li et al., 2012) are
the neighborhood-based models that proposed to
generate hash codes by decomposing the adjacency
matrix estimated from document features.

Since different aspects of information are empha-
sized in documents content (features) and neigh-
borhood among documents, many works have been
done to take both semantic and neighborhood infor-
mation in generating high-quality hash codes into
account recently. For instances, RBSH (Hansen
et al., 2019) imposed a ranking component into
the loss function to model the similarity between
documents, NbrReg (Chaidaroon et al., 2018) and
PairRec (Hansen et al., 2020) required the hash
code of a document to reconstruct its neighbors,
and SNUH (Ou et al., 2021) integrated semantic
and neighborhood information in a unified frame-
work by representing the neighborhood informa-
tion with a Gaussian distribution and using it as the
prior distribution. However, as mentioned before,
the unreasonable requirements in PairRec and the
restrictive Gaussian prior in SNUH were limiting
the utilization of neighborhood information. By
modeling the whole subgraph simultaneously with
a flexible framework, we effectively improve the
performance of hash codes.

6 Experiments

6.1 Experiments Setup

Datasets Following previous works, three public
datasets published by VDSH are utilized to ver-
ify our proposed model: 1) Reuters21578, which
consists of 10,788 documents with 90 categories;
2) 20Newsgroups, which is a collection of 18,828
newsgroup posts with 20 different categories; 3)
TMC, which is the collection of air traffic reports
provided by NASA and contains 21,519 documents
with 22 categories.

Baselines For unsupervised semantic hashing,
we compare our proposed model with the follow-
ing models: SpH (Weiss et al., 2009), STH (Zhang
et al., 2010), VDSH (Chaidaroon and Fang, 2017),
NbrReg (Chaidaroon et al., 2018), NASH (Shen
et al., 2018), RBSH (Hansen et al., 2019), AMMI



Method Reuters

T™C

20Newsgroups Avg

16bits 32bits  64bits 128bits | 16bits  32bits

64bits 128bits | 16bits 32bits  64bits 128bits

0.6340
0.7351
0.7165
n.a.
0.7624
0.7911
0.8173
0.8244
0.8320

0.6513 0.6290
0.7554 0.7350
0.7753 0.7456
n.a. n.a.
0.7993 0.7812
0.8206 0.8371
0.8446 0.8506
0.8374 0.8543
0.8466 0.8560

0.6045
0.6986
0.7318
n.a.
0.7559
0.8470
0.8602
0.8544
0.8624

0.6055
0.3947
0.6853
n.a.
0.6573
0.6901
0.7096
0.7210
0.7251

SpH 0.6281
STH
VDSH
NbrReg
NASH
RBSH
AMMI
PairRec

SNUH

n.a.

0.6921

0.4105
0.7108

0.7203
0.7416
0.7470
0.7543

0.6143
0.4181
0.4410
n.a.
0.6548
0.7400
0.7522
0.7609
0.7658

0.5891
0.4123
0.5847
n.a.
0.5998
0.7494
0.7627
0.7628
0.7726

0.3200
0.5237
0.3904
0.4120
0.5108
0.4878
0.5518
0.5637
0.5775

0.3709 0.3196
0.5860 0.5806
0.4327 0.1731
0.4644 0.4768
0.5671 0.5071
0.5408 0.5758
0.5956 0.6398
0.6223 0.6413
0.6387 0.6646

0.2716
0.5443
0.0522
0.4893
0.4664
0.5985
0.6618
0.6578
0.6731

0.5198
0.5662
0.5366
0.4249
0.6462
0.6999
0.7323
0.7373
0.7474

0.8283
0.8402

0.8522 0.8538
0.8547 0.8771

0.8606
0.8804

0.7240
0.7365

NbrSHE
NbrSH 1%

0.7526
0.7621

0.7618
0.7724

0.7668
0.7779

0.6050 0.6243
0.6576 0.6741

0.6143
0.6785

0.5395
0.6074

0.7319
0.7599

Table 1: The precision on three datasets with different numbers of bits in unsupervised document hashing.

(Stratos and Wiseman, 2020), PairRec (Hansen
et al., 2020) and SNUH (Ou et al., 2021). For all
baselines, the reported performances from original
papers are taken except RBSH and PairRec since
they employed a different preprocessing method
on the datasets.

Training Details For the encoder network, we
follow to utilize the same architecture elaborated
in previous works for fair comparisons, using one
fully connected layer as the encoder. The graph G
is constructed with the k-nearest algorithm based
on the cosine similarity of TFIDF feature. In our
experiments, learning rate is fixed to 0.001, batch
size is fixed to 64, the scaling factor in NbrSHp, is
fixed to d while it is fixed to 1% in NbrSHy . Ad-
ditionally, the negative samples size in NbrSHy  is
simply set as 20 in all cases. As for the numbers
of nearest-neighbors in NbrSHy,, we set 100 for
Reuters, 20 for 20Newsgroups, and 50 for TMC,
respectively. According to the precision of valida-
tion set, we select the numbers of nearest-neighbors
in NbrSHy, from {10, 20, ..., 100}. The Adam op-
timizer (Kingma and Ba, 2014) with default setting
except learning rate is utilized to train the model.

Evaluation Metrics To evaluate the perfor-
mance of our model, retrieval precision is utilized.
For each query, we retrieve the top 100 similar doc-
uments based on the Hamming distance between
hash codes. And the retrieval precision is the ratio
of retrieved documents that share the same label
with the query. Lastly, we measure the performance
of models with the average precision across all
queries in the test set.

6.2 Performance of Hash Codes

Extensive experiments on the three public datasets
are conducted to verify the performance of

NbrSHEg and NbrSHy . The testing retrieval pre-
cision is demonstrated in Table 1. We see that
NbrSHy consistently outperforms all the baseline
models by a substantial margin, yielding the best
performance in all cases and the performance of
NbrSHp is close to the state-of-the-art methods.
Compared to the models that only utilized semantic
information, such as VDSH, NASH, AMMI, etc,
NbrSHy, achieves superior performance by inte-
grating the neighborhood information from the per-
spective of vertices. When it comes to the current
SOTA method of SNUH, NbrSHy successfully en-
hances the average precision with more than 1.2%
by utilizing a more flexible and expressive frame-
work to integrate the neighborhood information.
Since RBSH and PairRec employed a different pre-
possessing method on the datasets, we retrain them
on our datasets and the results show that modeling
the subgraphs of the neighboring graph instead of
independent edges is a superior method to model
the neighborhood information. Additionally, com-
paring NbrSHy, with NbrSHg, the improvement of
performance meets our understanding of the infor-
mative global structure of neighborhood informa-
tion. Moreover, by dividing a scaling factor in inner
product computation, we consistently improve the
performance with larger bits.

6.3 Impact of Number of Neighbors

To understand the impact of the number of selected
neighbors, we train NbrSHy with {0, 10, ..., 100}
neighbors on three public datasets. We demonstrate
the results with line plot in Fig. 2. Firstly, We ob-
serve that, compared to not considering any neigh-
borhood information, ten neighbors can bring sig-
nificant performance gains in most cases. Secondly,
for 20Newsgroups and TMC, the model tends to
achieve better performance with lesser neighbors
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Figure 2: The retrieval precision of 64-bit and 128-bit
hash codes with varying the number of selected neigh-
bors on the three public datasets.

while Reuters prefer to take more neighbors into
account. In a word, it is a trade-off between the in-
creasing information provided by more neighbors
and the decreasing accuracy of selected neighbors
that indeed share the same label with the starting
vertex. Finally, for the same dataset, the best num-
ber of neighbors tends to be similar across different
lengths of hash codes.

6.4 Impact of Negative Samples Size in
Efficient Training

To understand the impact of negative samples
size in efficient training for vertex-based model,
we train NbrSHy, with {10, 20, 100, 200, ..., 1000}
negative samples. And in each case, we train the
model with three different random seeds to mea-
sure if it is sensitive to different initialization states.
Then we compare the average retrieval precision
of each negative sample size with the result of
NbrSH€“” in Fig. 3. We can observe that the
results of NbrSHy, with different negative samples
sizes are scattered around the result of NbrSHE !,
demonstrating the feasibility of training the model
by maximizing £%"" instead of £ and the in-
sensibility of negative samples size. Moreover, the
performance of efficient training is stable in most
cases with different random seeds.

6.5 Visualization of Hash Codes

To intuitively evaluate the quality of generated hash
codes of our proposed model, we utilize the t-SNE
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Figure 3: The retrieval precision of 64-bit and 128-
bit hash codes with varying negative samples size on
Reuters and 20Newsgroups. The red line is the result
of NbrSHZ*!! and the blue line is the mean result of
NbrSHy, with three different random seeds.

v

(a) NbrSHy (b) SNUH

Figure 4: Visualization of the 64-dimensional hash
codes generated by our proposed models for the
20Newsgroups dataset with the t-SNE technique.

(van der Maaten and Hinton, 2008) technique to
transform the 64-dimensional hash codes into 2-
dimensional vectors. By comparing with the vi-
sualization result of SNUH, shown in Fig. 4, the
hash codes generated by NbrSHy, are more separa-
ble, demonstrating the superiority of our proposed
model.

7 Conclusion

We have proposed an effective and efficient hashing
method to leverage both the semantics and neigh-
borhood information among documents. In partic-
ular, we viewed the neighborhood information as
another kind of observation and utilized a vertex-
based model to model the global adjacent structure
of each subgraph of the neighborhood. By inte-
grating the vertex-based neighborhood model with
existing generative hashing models, significant per-
formance gains were observed compared to current
state-of-the-art methods on three public datasets.
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A Appendices

A.1 Expressing £x and L in Analytical
Form

According to the definition in section 2, we have

N

po(X12)=]] po

i=1

N |zl

H HP@ wzy‘zz

i=1j=1

(x4|2i)

with
exp(z] Ew;j + b;)

- .
Z'k |1 exp(z] Ew;y + by)

po(wijlzi) &

Therefore, by utilizing Monte Carlo Sampling and
reparametrization trick, £ x can be expressed in an
analytical form

N |zl
£x =303 tog e L)
i=1 j=1 k 1exp( Tszk+bk)

where Z; = pu; + € - 5; with € being d-dimensional
standard Gaussian noise.

As for Lk, since ¢4(Z|X) = Hf\il 46 (zilx;)
andp(Z) = Hf\il p(zi), it can be decomposed into
the summation of N terms

N
i =3 KL(go(zila) [p(=))
=1

Because qq(zi|z:) = N(zi; diag(ﬁg)) and
p(2i) = N(0, 1a), K L(qy(2i|7i)||Ip(2:)) can be de-
rived as

K L(qy(zi|zi)|lp(2i))

[log %(Zi |z;) — log p(zi)]

= Eg,|log H exp(—
\/27‘(',62
1 z?n
—log H \/% exp(2)]

= Ep(e,) [Z Mm + 2ﬂmﬁz;€m + /Bmfm

( Zin _,uin)Z )
267,

n=1
. 2log Bin + 61271
2

|

d
1
n=1

where we utilize the reparametrization trick to
transform z; into u; + €; - 8;. Therefore, Lx1,
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can be expressed in an analytical form

N d
1
Lkr = 5 Z Z(:u'%n =+ ﬁzzn - QIOgﬁzn - 1)
i=1 n=1
A.2 Proof of Proposition 4.1

Proof. According to the definitions stated
in Proposition 4.1, we have L£%¥"(i) =2

ZjeNi (S(ana) log (Eke\)\z exp(s(zwzk) )))
and its NS approximation E“e’“t( )
ZjeN<m log (Shegyus, eXp(S(Z“Zk))»‘

The maximization of £ (i) and L% (i) can be
viewed as the maximization of distributions, that is

max L% (i) <:>maXH p(u=j|Z, v=t)
JEN;
max L% (i) @maxH p(u=j|Z,v=t)
JEN;
where p(u=j|Z, v=i) is defined in (12) and

exp(s(zv, 2u)/7)
D kefupus, exXP(s(zv, 2k)/5)

p(u|Z,v) =

By maximizing the log probability of p(u=j|Z, v=
i), we actually encouraging the model to distin-
guish which vertex in S;; £ {j} U S; is the neigh-
bor of vertex 7. In other word, the maximization
encourages p(u=j|Z, v=i) to approach its ground-
truth distribution P(nbr=j|v=i), which is defined
as

P(nbr=j|v=i)
P(u=jlv=i) T]1; a(u=0)

- Zkesij P(u=k|v=t) [T ¢(u=1)
Plu=jlv=i)

q(u i)
Zkes

u k|'u i)
(u=k)
where P(u|v) = IN  foru € N, and 0 otherwise,
is the ground-truth distribution of p(u|Z, v). If we
further assume that the score function s(z;, z;) is
sufficiently expressive, we have

p(u=j|Z,v=i) = P(u=j|v=i)
p(u=j|Z,v=t) = P(nbr=j|v=i)

Since ¢(u) is a uniform distribution, we have

exp(s(zv, Zu)) X ]P)(u‘v) = p(u\Z, ’U),



Distance Title/Subject Category

query Crypto is for hard-core hackers & spooks only crypt
5 RE: Once tapped, your code is no good any more crypt
10 RE: Secret algorithm [Re: Clipper Chip and crypto key-escrow] crypt
20 RE: Do we need the clipper for cheap security? crypt
50 RE: AD conversion mac.hardware
70 RE: Looking for MOVIES w/ BIKES motorcycles
90 RE: Atlanta Hockey Hell!! hockey

Table 2: The documents with Hamming distances of 5, 10, 20, 50, 70, and 90 to the query of the 128-bit hash
codes on the 20Newsgroups dataset.

for all ¢, 7 € V. Then, the following relation holds
max LY (i) < max LY (i),

in the sense that at their optimal points, both of
them can have the distribution ps(u|Z, v) equal to
the same distribution P(u|v). O

A.3 Model Architecture Details

Encoder Encoder consists of one fully connected
layer to project the raw feature into the latent space.
Specifically, given x;, yu; = sigmoid(Fy(x;)/0.1)
and o; = softplus(F»(x;)), where F} and F; are
one-layer feed-forward neural networks and 0.1 is
temperature for a faster convergence speed. Then,
by utilizing reparameterization trick, z; = p; +€®
oi, where ¢ ~ N(0,1;) and ® denotes element
wise product.

Decoder of documents As indicated in (Shen
et al., 2018), employing expressive nonlinear de-
coders likely destroy the distance-keeping prop-
erty. Therefore, the decoder of documents sim-
ply consists of an embedding layer and &; =
softmax(z;T E + bgec).

A.4 Case Study

To understand the document retrieval with Ham-
ming distance intuitively, we present a retrieval
case of a given query document, which is stated in
Table 2. We can observe that the topic of the re-
trieved document becomes more irrelevant with the
increase of the Hamming distance, demonstrating
that the Hamming distance can effectively measure
the relevance of documents.
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