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Abstract

Semantic hashing is an effective technique for001
large-scale information retrieval because of its002
fast speed and small memory footprint. It is003
known that both document content and neigh-004
borhood information are instrumental in gen-005
erating high-quality hash codes. To leverage006
these two types of information simultaneously,007
we propose to place the problem under the008
framework of generative models and treat the009
neighborhood information as another observa-010
tion, in addition to document content, which011
makes the key problem reduced to how to012
model the neighborhood information well. To013
model it, we first view the neighborhood as a014
collection of independent edges and propose to015
model them with Bernoulli distributions. How-016
ever, the independent edge assumption makes017
the model not able to capture the global neigh-018
borhood structure. To alleviate this issue, a019
vertex-based neighborhood model is further020
developed by decomposing a graph into a set021
of subgraphs, with the global neighborhood022
structure of each subgraph modeled simulta-023
neously by a conditional distribution over all024
vertices. When the vertex-based neighborhood025
model is integrated with existing generative026
hashing models, significant performance gains027
are observed compared to current state-of-the-028
art models on three publicly available datasets.029

1 Introduction030

Similarity search aims to find the most similar031

items to the query from a large dataset and enjoys032

extensive applications such as plagiarism analy-033

sis (Stein et al., 2007), image retrieval (Jing and034

Baluja, 2008) and collaborative filtering (Koren,035

2008) etc. However, since the original features036

in applications are mostly real-valued, it is com-037

putationally expensive to evaluate the similarity038

between huge amount of pairs of items, and not039

friendly to storage, neither. In the area of docu-040

ment retrieval, semantic hashing has been widely041

used to tackle this problem by transforming the042

real-valued feature representations of documents 043

into compact and informative binary codes, which 044

enables us to find out similar documents with high 045

speed and small memory footprint. 046

To generate high-quality hash codes that pre- 047

serve the semantic information of documents, ex- 048

tensive efforts have been made. To effectively lever- 049

age the ubiquitous unlabeled data, using deep gen- 050

erative models to achieve unsupervised semantic 051

hashing has attracted considerable attentions in re- 052

cent years (Chaidaroon and Fang, 2017; Shen et al., 053

2018; Hansen et al., 2020; Ou et al., 2021). By mod- 054

eling the documents contents (features) with a vari- 055

ational autoencoder (VAE) (Kingma and Welling, 056

2013), the obtained inference network is used to 057

produce high-quality hash codes that preserve the 058

semantic information of documents successfully. 059

In addition to document content (features), 060

neighborhood information that describes the ad- 061

jacency of different documents is also available 062

under some circumstances. In practice, the neigh- 063

borhood information could be collected along with 064

the documents, but more often it is estimated from 065

the documents through post-processing, e.g., esti- 066

mated according to the cosine similarities of TFIDF 067

features. Neighborhood information is known to 068

contain rich document similarity information that 069

is useful for high-quality hash code generation. 070

For instances, the locality-preserving hashing (He 071

et al., 2004; Zhao et al., 2014) and spectral hash- 072

ing (Weiss et al., 2009; Li et al., 2012) proposed 073

to generate hash codes by decomposing the adja- 074

cency matrix estimated from document features. In 075

addition to the neighborhood information, the orig- 076

inal document features are also instrumental for 077

hash codes. To generate high-quality hash codes, 078

the better way should be to leverage both types of 079

information simultaneously. Based on this idea, 080

(Chaidaroon et al., 2018; Hansen et al., 2020) pro- 081

posed to encourage the hash code of a document to 082

reconstruct all adjacent documents. However, since 083
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adjacent documents do not necessarily contain sim-084

ilar content, it is not a good way to exploit the085

neighborhood information by requiring all adjacent086

documents to be reconstructed from one hash code.087

Recently, (Ou et al., 2021) proposed to represent088

the neighborhood information by a Gaussian distri-089

bution and then use it as a prior distribution for the090

generative model of document content. The model091

achieved a principled integration of the two types of092

heterogeneous information under one model. How-093

ever, considering that the representational ability094

of a Gaussian distribution is known to be very lim-095

ited, using a Gaussian distribution to represent the096

complicated neighborhood may cause too much097

information to be lost.098

In this paper, to simultaneously leverage the doc-099

ument content and neighborhood information, we100

propose to treat the neighborhood information as101

another kind of observation, just like the docu-102

ment content. To model the neighborhood infor-103

mation, we first view the neighborhood graph as104

a collection of independent edges and then pro-105

pose to model the neighborhood by modeling the106

edges with a set of independent Bernoulli distribu-107

tions. However, the independent-edge assumption108

makes the method only focus on modeling doc-109

ument pairs, while neglecting the overall global110

neighborhood structures. To alleviate this issue, we111

then propose to model the neighborhood informa-112

tion from the perspective of vertices. Specifically,113

we propose to decompose the full graph into a set114

of subgraphs and then model the global adjacent115

structure of a subgraph by a conditional distribu-116

tion over vertices. Since every subgraph contains117

all documents and a part of edges, the vertex-based118

neighborhood model is certainly better at capturing119

the global neighborhood structure than the edge-120

based model, which only focuses on modeling doc-121

ument pairs. Experimental results on three public122

datasets demonstrate that when the proposed vertex-123

based neighborhood model is integrated with exist-124

ing generative semantic hashing models, significant125

performance gains can be observed compared to126

the current state-of-the-art methods.127

2 Preliminaries128

To preserve the semantic information of documents129

in hash codes, a widely used approach is to model130

the documents by a generative model and then ex-131

tract the hash codes from its latent representations.132

Specifically, given a corpus X = {xi}Ni=1, genera-133

tive hashing methods (Chaidaroon and Fang, 2017; 134

Ou et al., 2021) seek to model a document xi by a 135

latent-variable model as 136

p(xi, zi) = pθ(xi|zi)p(zi), (1) 137

where p(zi) = N (zi; 0, Id) is the prior distribution 138

of latent variable zi ∈ Rd; and pθ(xi|zi) is the 139

decoder. In semantic hashing, it is often defined as 140

pθ(xi|zi) =
∏|xi|
j=1 pθ(wij |zi), where 141

pθ(wij |zi) ,
exp(zTi Ewij + bj)∑|V |
k=1 exp(zTi Ewik + bk)

, (2) 142

and wij denoting a one-hot vector representing the 143

j-th word of document xi; E ∈ Rd×|V | is a learn- 144

able embedding matrix connecting latent code zi 145

and one-hot representation of word wij ; and bj is 146

the bias. By assuming independence among differ- 147

ent documents, the corpus X is modeled as 148

p(X , Z) = pθ(X|Z)p(Z), (3) 149

where pθ(X|Z) =
∏N
i=1 pθ(xi|zi) and p(Z) = 150∏N

i=1 p(zi) with p(zi) = N (zi; 0, Id); and Z , 151

[z1, z2, ..., zN ]. The model can be trained by max- 152

imizing the evidence lower bound (ELBO) of the 153

log-likelihood log p(X ). After training, the hash 154

code of a document x can be obtained from its 155

corresponding representation in the latent space. 156

Existing Neighborhood Information Construc- 157

tion and Integration Methods Under some cir- 158

cumstances, in addition to the textual data {xi}Ni=1, 159

it is also possible to have the neighborhood data 160

available during the training. In practice, the neigh- 161

borhood data can be collected together with the doc- 162

uments. But more often, it is constructed from the 163

collected documents through some post-processing 164

methods. For instances, in (Hansen et al., 2020; 165

Ou et al., 2021), a connection graph G(V, E) is 166

constructed for documents based on the cosine 167

similarities of their BM or TFIDF features, where 168

V = {1, 2, · · · , N} and E denote the vertices (doc- 169

uments) and edges, respectively. Specifically, in 170

(Ou et al., 2021), each document is considered to 171

be connected to its top K most similar documents, 172

that is, 173

E,{(i, j)|j ∈ top K similar docs of doc i}. (4) 174

In this paper, we follow to utilize the same neigh- 175

borhood graph construction method. 176
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Due to the richness of semantic-similarity infor-177

mation contained in the neighborhood data G, it178

has been proposed to integrate it with the textual179

data to produce higher-quality hash codes. To this180

end, PairRec (Hansen et al., 2020) proposed to en-181

force the hash code of a document to reconstruct182

its neighboring documents, too, in addition to the183

original document itself. But for the task of hash-184

ing, enforcing a hash code to reconstruct all neigh-185

boring documents is not reasonable since adjacent186

documents do not necessarily contain similar con-187

tent, but only imply the same topic or category is188

shared. To better utilize the neighborhood informa-189

tion, SNUH (Ou et al., 2021) proposed to replace190

the independent prior p(Z) =
∏N
i=1N (zi; 0, Id)191

with a neighborhood-informed Gaussian prior dis-192

tribution p(Z) = N (Z; 0,ΣG), where ΣG denotes193

a Nd ×Nd covariance matrix that specifies how194

different documents are correlated, and is derived195

from the neighborhood graph G. Although SNUH196

can unify the textual and neighborhood information197

under one model, representing the whole neighbor-198

hood information solely by a Gaussian prior is still199

too restrictive, especially in consideration of the200

limited representational ability of Gaussian distri-201

butions.202

3 Neighborhood Information Modeling203

Methods204

To leverage the neighborhood information, instead205

of representing it as a prior distribution as in SNUH206

(Ou et al., 2021), we view it as another type of ob-207

served data, just like the textual data X = {xi}Ni=1.208

Specifically, we simultaneously model the corpus209

X and neighborhood data G by the following joint210

model211

p(X , G, Z) = pθ(X|Z)p(G|Z)p(Z), (5)212

where pθ(X|Z) =
∏N
i=1 pθ(xi|zi) and p(Z) =213 ∏N

i=1 p(zi) =
∏N
i=1N (zi; 0, Id) are the decoder214

of textual data and prior distribution, respectively,215

which are the same as previous models in (3); and216

p(G|Z) denotes the decoder of neighborhood data,217

which will be elaborated detailedly in subsequent218

sections. Obviously, by viewing the neighborhood219

data as another observation, in addition to unifying220

the two types of information under a model, we221

can also resort to flexible decoders to capture the222

complex neighborhood information among differ-223

ent documents.224

3.1 Modeling Neighborhood from the 225

Perspective of Edges 226

The simplest way to model the neighborhood infor- 227

mation is to view it as a collection of independent 228

connections (edges) and disconnections (no edge). 229

Under this perspective, the neighborhood informa- 230

tion can be simply modeled as 231

p(G|Z) =
∏

(i,j)∈E

p(eij = 1|zi, zj) 232

×
∏

(i,j)∈Ē

p(eij = 0|zi, zj), (6) 233

where Ē is the complement set of E , i.e., the set con- 234

taining all pairs of unconnected vertices in graphG; 235

and p(eij |zi, zj) is a Bernoulli distribution, which 236

is used to indicate whether vertex i and j are con- 237

nected. In this paper, this Bernoulli distribution is 238

defined in the form 239

p(eij = 1|zi, zj) , σ
(
(zTi zj + b)/τ

)
, (7) 240

where τ is a scaling factor, b is the bias term; σ(·) 241

is the sigmoid function. 242

From (7), we can see that if there is an edge 243

between document i and j (that is, eij = 1), the 244

neighborhood model will enforce their latent rep- 245

resentations zi and zj to be similar. Otherwise, zi 246

and zj will be pushed away from each other. In 247

this way, the neighborhood information inG, along 248

with the textual contentX , can be incorporated into 249

the latent representations Z. However, when we 250

model the neighborhood information using (6), it 251

is implicitly assumed that for any two documents 252

(i, j) ∈ Ē , they must be dissimilar. But as we con- 253

struct the graph G like (4), to ensure the accuracy 254

of added edges, each document is only connected 255

to its top K most similar documents, while having 256

the remaining ones unconnected. Obviously, it is 257

unwise to require all document pairs (i, j) ∈ Ē 258

to output dissimilar latent representations because 259

many of them may share similar semantic informa- 260

tion. To address this issue, we propose to require 261

only a portion of document pairs in Ē to output 262

dissimilar latent representations. To this end, we 263

define a set E0 that contains the most dissimilar 264

documents pairs, that is, 265

E0,{(i,j)|j∈bottom K ′ similar docs of i}, (8) 266

where the similarity is evaluated according to the 267

documents’ TFIDF features. Then, only the docu- 268

ment pairs from E0 are encouraged to output dissim- 269

ilar latent representation, that is, the neighborhood 270
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Figure 1: Example to demonstrate graph decomposi-
tion. The yellow vertices are the center vertices of sub-
graphs.

model is written as p(G|Z) =
∏

(i,j)∈E p(eij =271

1|zi, zj) ×
∏

(i,j)∈E0 p(eij = 0|zi, zj), or equiva-272

lently273

p(G|Z) =
∏

(i,j)∈E

σ
(
(zTi zj + b)/τ

)
274

×
∏

(i,j)∈E0

(
1−σ

(
(zTi zj + b)/τ

))
. (9)275

Moreover, under the most extreme case, we can set276

E0 = ∅, which means not to consider any uncon-277

nected document pairs.278

3.2 Modeling Neighborhood from the279

Perspective of Vertices280

In this section, we propose another way to model281

the neighborhood information from the perspective282

of vertices. Specifically, for a neighborhood graph283

G(V, E), we decompose it into into |V| subgraphs284

Gsi (V, Ei) for i = 1, 2, · · · , |V|, with the subgraph285

Gsi describing the connection structure of vertex286

i to the rest vertices V\i. An example of graph287

decomposition is illustrated in Fig. 1, in which the288

neighborhood graphG is decomposed into five sub-289

graphs. With the decomposition, the neighborhood290

information in G is equivalently represented in the291

set of subgraphs Gs1, G
s
2, · · · , Gs|V|. Therefore, to292

model the neighborhood information G given Z,293

we can model its subgraphs instead294

p(G|Z) ,
∏
i∈V

p(Gsi |Z), (10)295

where p(Gsi |Z) is the model of neighborhood in-296

formation of vertex i. For the subgraph Gsi , we do297

not model it as a collection of independent distri- 298

butions over edges, as done in Section 3.1. Instead, 299

we model it as a set of conditional independent 300

distributions over vertices, that is, 301

p(Gsi |Z) =
∏
j∈Ni

p(u = j|Z, v = i), (11) 302

where Ni , {j|(i, j) ∈ E} denotes the neigh- 303

bors of vertex i; and the conditional distribution 304

p(u|Z, v) is defined as 305

p(u|Z, v) =
exp(zTv zu/τ)∑

k∈V\v exp(zTv zk/τ)
, (12) 306

where u ∈ V\v. It can be easily seen that p(u|Z, v) 307

describes the probability of vertex u being a neigh- 308

bor of vertex v as vertex v is given. By substituting 309

(11) and (12) into (10), we obtain the final model 310

of neighborhood information as 311

p(G|Z) =
∏

(i,j)∈E

exp(zTi zj/τ)∑
k∈V\i exp(zTi zk/τ)

. (13) 312

It can be seen from (13) that if document i and j 313

are adjacent (i.e., (i, j) ∈ E), their latent represen- 314

tations zi and zj will be encouraged to be similar 315

so as to increase the probability exp(zTi zj/τ)∑
k∈V\i exp(zTi zk/τ)

316

of observing this adjacency. Thus, by using this 317

model, the neighborhood information can be in- 318

corporated into the latent representation learning 319

process smoothly. Note that the vertex-based neigh- 320

borhood model does not explicitly contain terms 321

concerning unconnected document pairs (i, j) ∈ Ē 322

as in edge-based model (6). This is because in the 323

vertex-based model, since the summation of proba- 324

bilities
∑

j∈V\i p(j|Z, i) = 1 always holds, if we 325

try to increase the probabilies for j ∈ Ni, the sum- 326

mation of probabilities
∑

j∈N i p(j|Z, i) regarding 327

unconnected pairs will be decreased automatically, 328

where N i represents the set of unconnected ver- 329

tices of vertex i. Moreover, since only the summa- 330

tion
∑

j∈N i p(j|Z, i) is encouraged to decrease, it 331

is still possible to allow the probabilities of some 332

unconnected pairs to be large, which partially alle- 333

viates the issue that not all unconnected documents 334

have dissimilar semantic information. 335

Compared with the edge-based model, a unique 336

characteristic of the vertex-based neighborhood 337

model is that it is able to perceive the global 338

neighborhood information when dealing with a 339

pair of documents (i, j) ∈ E . That is because 340
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its probability term corresponding to a pair of doc-341

uments depends on the latent representations of342

all documents due to the existence of denomina-343

tor
∑

k∈V\i exp(zTi zk/τ). But in the edge-based344

model, we can see that the probability term corre-345

sponding to a pair of documents is only determined346

by latent representations of the two relevant docu-347

ments. The global awareness of the vertex-based348

model makes it more advantageous in capturing the349

global neighborhood structure, as corroborated by350

later empirical experimental results.351

4 Training352

To train the neighborhood information inte-353

grated hashing model (5), the objective is to354

maximize the log-likelihood log p(X , G) =355

log
∫
pθ(X|Z)p(G|Z)p(Z)dZ. But due to the in-356

tractability of computing exact log-likelihood, we357

instead maximize its lower bound (ELBO) under358

the framework of variational inference359

L=Eqφ(Z|X )[log pθ(X|Z)]︸ ︷︷ ︸
LX

−KL(qφ(Z|X )‖p(Z))︸ ︷︷ ︸
LKL

360

+ Eqφ(Z|X )[log p(G|Z)]︸ ︷︷ ︸
LG

, (14)361

where qφ(Z|X ) is the variational posterior. In this362

paper, we assume qφ(Z|X ) to maintain a factorized363

Gaussian distribution form, that is, qφ(Z|X ) ,364 ∏N
i=1 qφ(zi|xi) with365

qφ(zi|xi) = N (zi;µi, diag(β2
i )), (15)366

where µi ∈ Rd and β2
i ∈ Rd denote the mean and367

variance vectors, respectively; and diag(·) means368

the diagonalization function. In our experiments,369

µi and β2
i are the outputs of two neural networks370

that take xi as input and are parameterized by φ. To371

make the latent representation zi more compatible372

with binary hash codes, we confine the range of µi373

to the interval (0, 1) by using a sigmoid function at374

the end of the neural network.375

By noticing pθ(X|Z) =
∏N
i=1 pθ(xi|zi) and376

p(Z) =
∏N
i=1N (zi; 0, Id), combining with the377

factorized Gaussian assumption on qφ(Z|X), the378

expressions for LX and LKL terms in (14) are ex-379

actly the same as those in previous generative se-380

mantic models, which can be found in Appendix381

A.1. As for the neighborhood-relevant term LG, its382

expressions w.r.t. the edge-based and vertex-based383

neighborhood models are 384

LedgeG =
∑

(i,j)∈E

log σ
(
(z̃Ti z̃j + b)/τ

)
385

+
∑

(i,j)∈E0

log
(
1−σ

(
(z̃Ti z̃j+b)/τ

))
, (16) 386

387

LvertG =
∑

(i,j)∈E

̃zTi z̃j
τ
−log

∑
k∈V\i

exp(
z̃Ti z̃k
τ

)

 (17) 388

where z̃i = µi + ε · βi with ε being d-dimensional 389

standard Gaussian noise, which is the reparameter- 390

ization trick (Kingma and Welling, 2013), a well- 391

known technique that is widely used for expecta- 392

tion estimation. By replacingLG in (14) with either 393

LedgeG or LvertG , the ELBO L can be optimized with 394

SGD algorithms. Note that at each iteration, we do 395

not need to consider all document pairs (i, j) ∈ E 396

simultaneously, but only need to use a minibatch 397

of them to reduce the computation cost, thanks to 398

the factorized form of LedgeG and LvertG over the 399

document pairs (i, j) ∈ E . After training, the hash 400

code of a document xi can be obtained by binariz- 401

ing its posterior mean µi with a threshold, e.g., 0.5 402

(Chaidaroon and Fang, 2017). 403

Efficient Training for Vertex-Based Neighbor- 404

hood Model When we optimize the ELBO with 405

LvertG , we can use minibatchs from E to replace 406

the full batch E to reduce the computational cost 407

at every iteration. However, from (17), it can be 408

seen that there is another summation over individ- 409

ual documents V\i inside the log(·) function. This 410

means that if we want to compute the gradient of 411

LvertG w.r.t. a pair of documents (i, j) ∈ E , we have 412

to take all documents in the training dataset into 413

account. This makes using minibatchs from E to re- 414

duce complexity meaningless because we still need 415

to consider all documents for every iteration. In 416

order to effectively reduce the training complexity, 417

we can further approximate LvertG by L̃vertG , where 418

L̃vertG =
∑
i∈V

∑
j∈Ni

̃zTi z̃j
τ
−log

 ∑
k∈{j}∪Si

exp(
z̃Ti z̃k
τ

)


︸ ︷︷ ︸

L̃vertG (i)

, 419

and Si is a subset randomly drawn from V\i. Es- 420

sentially, this method is to use summation over 421

a small subset S to replace the summation over 422

the set V\i. When the denominator of a softmax 423
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function contains a huge amount of terms, using424

a small proportion of them to approximate it dur-425

ing the training is a technique called negative sam-426

pling (NS), which is widely used in the training427

of word2vec (Mikolov et al., 2013), network em-428

bedding, etc., and has been found great success.429

Inspired by the theories of noise contrastive estima-430

tion (NCE) (Gutmann and Hyvärinen, 2010) and431

InfoNCE (van den Oord et al., 2019), we justify432

the negative-sampling approximation in a more rig-433

orous way below.434

Proposition 4.1. Define a function LvertS (i) ,435 ∑
j∈Ni

(
s(zi,zj)

τ − log
(∑

k∈V\i exp( s(zi,zk)
τ )

))
436

and its NS approximation L̃vertS (i) ,437 ∑
j∈Ni

(
s(zi,zj)

τ −log
(∑

k∈{j}∪Si exp( s(zi,zk)
τ )

))
.438

If the score function s(zi, zj) is sufficiently439

expressive, maximizing L̃vertS (i) is equivalent to440

maximize LvertS (i) in the sense that at their optimal441

points, both of them can have the distribution442

pS(u|Z, v) = exp(s(zv ,zu)/τ)∑
k∈V\v exp(s(zv ,zk)/τ) equal to the443

same distribution P(u|v), where P(u|v) = 1
|Nv |444

for u ∈ Nv and 0 otherwise.445

Proof. Please refer to the Appendix A.2.446

Obviously, if we set s(zi, zj) = zTi zj , then447

LvertS (i) and L̃vertS (i) are reduced to Lvert(i) ,448 ∑
j∈Ni

(
zTi zj
τ − log

(∑
k∈V\i exp(

zTi zk
τ )
))

and449

L̃vert(i), respectively. Thus, maximizing the NS450

surrogate L̃vertG can be approximately viewed as451

maximizing the original LvertG .452

To facilitate discussion, we term the edge-453

based and vertex-based models as Neighborhood454

Semantic Hashing from Edges (NbrSHE) and455

Neighborhood Semantic Hashing from Vertices456

(NbrSHV ) respectively. Additionally, NbrSHV457

without NS approximation is termed as NbrSHFull
V .458

5 Related Works459

To generate high-quality hash codes with unsuper-460

vised hashing, extensive efforts have been made.461

VDSH (Chaidaroon and Fang, 2017) firstly intro-462

duced the variational autoencoder (VAE) (Kingma463

and Welling, 2013) into semantic hashing. To464

tackle the drawbacks brought by the two-stage465

training, NASH (Shen et al., 2018) replaced the466

Gaussian prior with Bernoulli prior and utilized the467

straight-through technique (Bengio et al., 2013) to468

achieve end-to-end training. Differing from mod-469

eling the documents contents with a generative470

model, AMMI (Stratos and Wiseman, 2020) sought 471

to generate high-quality hash codes by maximiz- 472

ing the mutual information between documents 473

and hash codes. Apart from the aforementioned 474

semantic-based models, locality-preserving hash- 475

ing (He et al., 2004; Zhao et al., 2014) and spectral 476

hashing (Weiss et al., 2009; Li et al., 2012) are 477

the neighborhood-based models that proposed to 478

generate hash codes by decomposing the adjacency 479

matrix estimated from document features. 480

Since different aspects of information are empha- 481

sized in documents content (features) and neigh- 482

borhood among documents, many works have been 483

done to take both semantic and neighborhood infor- 484

mation in generating high-quality hash codes into 485

account recently. For instances, RBSH (Hansen 486

et al., 2019) imposed a ranking component into 487

the loss function to model the similarity between 488

documents, NbrReg (Chaidaroon et al., 2018) and 489

PairRec (Hansen et al., 2020) required the hash 490

code of a document to reconstruct its neighbors, 491

and SNUH (Ou et al., 2021) integrated semantic 492

and neighborhood information in a unified frame- 493

work by representing the neighborhood informa- 494

tion with a Gaussian distribution and using it as the 495

prior distribution. However, as mentioned before, 496

the unreasonable requirements in PairRec and the 497

restrictive Gaussian prior in SNUH were limiting 498

the utilization of neighborhood information. By 499

modeling the whole subgraph simultaneously with 500

a flexible framework, we effectively improve the 501

performance of hash codes. 502

6 Experiments 503

6.1 Experiments Setup 504

Datasets Following previous works, three public 505

datasets published by VDSH are utilized to ver- 506

ify our proposed model: 1) Reuters21578, which 507

consists of 10,788 documents with 90 categories; 508

2) 20Newsgroups, which is a collection of 18,828 509

newsgroup posts with 20 different categories; 3) 510

TMC, which is the collection of air traffic reports 511

provided by NASA and contains 21,519 documents 512

with 22 categories. 513

Baselines For unsupervised semantic hashing, 514

we compare our proposed model with the follow- 515

ing models: SpH (Weiss et al., 2009), STH (Zhang 516

et al., 2010), VDSH (Chaidaroon and Fang, 2017), 517

NbrReg (Chaidaroon et al., 2018), NASH (Shen 518

et al., 2018), RBSH (Hansen et al., 2019), AMMI 519
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Method Reuters TMC 20Newsgroups Avg
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

SpH 0.6340 0.6513 0.6290 0.6045 0.6055 0.6281 0.6143 0.5891 0.3200 0.3709 0.3196 0.2716 0.5198
STH 0.7351 0.7554 0.7350 0.6986 0.3947 0.4105 0.4181 0.4123 0.5237 0.5860 0.5806 0.5443 0.5662

VDSH 0.7165 0.7753 0.7456 0.7318 0.6853 0.7108 0.4410 0.5847 0.3904 0.4327 0.1731 0.0522 0.5366
NbrReg n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.4120 0.4644 0.4768 0.4893 0.4249
NASH 0.7624 0.7993 0.7812 0.7559 0.6573 0.6921 0.6548 0.5998 0.5108 0.5671 0.5071 0.4664 0.6462
RBSH 0.7911 0.8206 0.8371 0.8470 0.6901 0.7203 0.7400 0.7494 0.4878 0.5408 0.5758 0.5985 0.6999
AMMI 0.8173 0.8446 0.8506 0.8602 0.7096 0.7416 0.7522 0.7627 0.5518 0.5956 0.6398 0.6618 0.7323
PairRec 0.8244 0.8374 0.8543 0.8544 0.7210 0.7470 0.7609 0.7628 0.5637 0.6223 0.6413 0.6578 0.7373
SNUH 0.8320 0.8466 0.8560 0.8624 0.7251 0.7543 0.7658 0.7726 0.5775 0.6387 0.6646 0.6731 0.7474

NbrSHE 0.8283 0.8522 0.8538 0.8606 0.7240 0.7526 0.7618 0.7668 0.5395 0.6050 0.6243 0.6143 0.7319
NbrSHV 0.8402 0.8547 0.8771 0.8804 0.7365 0.7621 0.7724 0.7779 0.6074 0.6576 0.6741 0.6785 0.7599

Table 1: The precision on three datasets with different numbers of bits in unsupervised document hashing.

(Stratos and Wiseman, 2020), PairRec (Hansen520

et al., 2020) and SNUH (Ou et al., 2021). For all521

baselines, the reported performances from original522

papers are taken except RBSH and PairRec since523

they employed a different preprocessing method524

on the datasets.525

Training Details For the encoder network, we526

follow to utilize the same architecture elaborated527

in previous works for fair comparisons, using one528

fully connected layer as the encoder. The graph G529

is constructed with the k-nearest algorithm based530

on the cosine similarity of TFIDF feature. In our531

experiments, learning rate is fixed to 0.001, batch532

size is fixed to 64, the scaling factor in NbrSHE is533

fixed to d while it is fixed to d
16 in NbrSHV . Ad-534

ditionally, the negative samples size in NbrSHV is535

simply set as 20 in all cases. As for the numbers536

of nearest-neighbors in NbrSHV , we set 100 for537

Reuters, 20 for 20Newsgroups, and 50 for TMC,538

respectively. According to the precision of valida-539

tion set, we select the numbers of nearest-neighbors540

in NbrSHE from {10, 20, ..., 100}. The Adam op-541

timizer (Kingma and Ba, 2014) with default setting542

except learning rate is utilized to train the model.543

Evaluation Metrics To evaluate the perfor-544

mance of our model, retrieval precision is utilized.545

For each query, we retrieve the top 100 similar doc-546

uments based on the Hamming distance between547

hash codes. And the retrieval precision is the ratio548

of retrieved documents that share the same label549

with the query. Lastly, we measure the performance550

of models with the average precision across all551

queries in the test set.552

6.2 Performance of Hash Codes553

Extensive experiments on the three public datasets554

are conducted to verify the performance of555

NbrSHE and NbrSHV . The testing retrieval pre- 556

cision is demonstrated in Table 1. We see that 557

NbrSHV consistently outperforms all the baseline 558

models by a substantial margin, yielding the best 559

performance in all cases and the performance of 560

NbrSHE is close to the state-of-the-art methods. 561

Compared to the models that only utilized semantic 562

information, such as VDSH, NASH, AMMI, etc, 563

NbrSHV achieves superior performance by inte- 564

grating the neighborhood information from the per- 565

spective of vertices. When it comes to the current 566

SOTA method of SNUH, NbrSHV successfully en- 567

hances the average precision with more than 1.2% 568

by utilizing a more flexible and expressive frame- 569

work to integrate the neighborhood information. 570

Since RBSH and PairRec employed a different pre- 571

possessing method on the datasets, we retrain them 572

on our datasets and the results show that modeling 573

the subgraphs of the neighboring graph instead of 574

independent edges is a superior method to model 575

the neighborhood information. Additionally, com- 576

paring NbrSHV with NbrSHE , the improvement of 577

performance meets our understanding of the infor- 578

mative global structure of neighborhood informa- 579

tion. Moreover, by dividing a scaling factor in inner 580

product computation, we consistently improve the 581

performance with larger bits. 582

6.3 Impact of Number of Neighbors 583

To understand the impact of the number of selected 584

neighbors, we train NbrSHV with {0, 10, ..., 100} 585

neighbors on three public datasets. We demonstrate 586

the results with line plot in Fig. 2. Firstly, We ob- 587

serve that, compared to not considering any neigh- 588

borhood information, ten neighbors can bring sig- 589

nificant performance gains in most cases. Secondly, 590

for 20Newsgroups and TMC, the model tends to 591

achieve better performance with lesser neighbors 592
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Figure 2: The retrieval precision of 64-bit and 128-bit
hash codes with varying the number of selected neigh-
bors on the three public datasets.

while Reuters prefer to take more neighbors into593

account. In a word, it is a trade-off between the in-594

creasing information provided by more neighbors595

and the decreasing accuracy of selected neighbors596

that indeed share the same label with the starting597

vertex. Finally, for the same dataset, the best num-598

ber of neighbors tends to be similar across different599

lengths of hash codes.600

6.4 Impact of Negative Samples Size in601

Efficient Training602

To understand the impact of negative samples603

size in efficient training for vertex-based model,604

we train NbrSHV with {10, 20, 100, 200, ..., 1000}605

negative samples. And in each case, we train the606

model with three different random seeds to mea-607

sure if it is sensitive to different initialization states.608

Then we compare the average retrieval precision609

of each negative sample size with the result of610

NbrSHFull
V in Fig. 3. We can observe that the611

results of NbrSHV with different negative samples612

sizes are scattered around the result of NbrSHFull
V ,613

demonstrating the feasibility of training the model614

by maximizing L̃vertG instead of LvertG and the in-615

sensibility of negative samples size. Moreover, the616

performance of efficient training is stable in most617

cases with different random seeds.618

6.5 Visualization of Hash Codes619

To intuitively evaluate the quality of generated hash620

codes of our proposed model, we utilize the t-SNE621
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Figure 3: The retrieval precision of 64-bit and 128-
bit hash codes with varying negative samples size on
Reuters and 20Newsgroups. The red line is the result
of NbrSHFull

V and the blue line is the mean result of
NbrSHV with three different random seeds.

(a) NbrSHV (b) SNUH

Figure 4: Visualization of the 64-dimensional hash
codes generated by our proposed models for the
20Newsgroups dataset with the t-SNE technique.

(van der Maaten and Hinton, 2008) technique to 622

transform the 64-dimensional hash codes into 2- 623

dimensional vectors. By comparing with the vi- 624

sualization result of SNUH, shown in Fig. 4, the 625

hash codes generated by NbrSHV are more separa- 626

ble, demonstrating the superiority of our proposed 627

model. 628

7 Conclusion 629

We have proposed an effective and efficient hashing 630

method to leverage both the semantics and neigh- 631

borhood information among documents. In partic- 632

ular, we viewed the neighborhood information as 633

another kind of observation and utilized a vertex- 634

based model to model the global adjacent structure 635

of each subgraph of the neighborhood. By inte- 636

grating the vertex-based neighborhood model with 637

existing generative hashing models, significant per- 638

formance gains were observed compared to current 639

state-of-the-art methods on three public datasets. 640
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A Appendices749

A.1 Expressing LX and LKL in Analytical750

Form751

According to the definition in section 2, we have752

pθ(X|Z)=

N∏
i=1

pθ(xi|zi)=

N∏
i=1

|xi|∏
j=1

pθ(wij |zi)753

with754

pθ(wij |zi) ,
exp(zTi Ewij + bj)∑|V |
k=1 exp(zTi Ewik + bk)

.755

Therefore, by utilizing Monte Carlo Sampling and756

reparametrization trick, LX can be expressed in an757

analytical form758

LX =
N∑
i=1

|xi|∑
j=1

log
exp(z̃Ti Ewij + bj)∑|V |
k=1 exp(z̃Ti Ewik + bk)

,759

where z̃i = µi + ε · βi with ε being d-dimensional760

standard Gaussian noise.761

As for LKL, since qφ(Z|X ) =
∏N
i=1 qφ(zi|xi)762

and p(Z) =
∏N
i=1 p(zi), it can be decomposed into763

the summation of N terms764

LKL =
N∑
i=1

KL(qφ(zi|xi)‖p(zi)) .765

Because qφ(zi|xi) = N (zi;µi, diag(β2
i )) and766

p(zi) = N (0, Id),KL(qφ(zi|xi)‖p(zi)) can be de-767

rived as768

KL(qφ(zi|xi)‖p(zi))
= Eqφ [log qφ(zi|xi)− log p(zi)]

= Eqφ

log
d∏

n=1

1√
2πβ2

in

exp(−(zin−µin)2

2β2
in

)

− log

d∏
n=1

1√
2π

exp(−z
2
in

2
)

]

= Ep(εi)

[
d∑

n=1

µ2
in + 2µinβinεin + β2

inε
2
in

2

−2 log βin + ε2in
2

]
=

1

2

d∑
n=1

(µ2
in + β2

in − 2 log βin − 1)

769

where we utilize the reparametrization trick to770

transform zi into µi + εi · βi. Therefore, LKL771

can be expressed in an analytical form 772

LKL =
1

2

N∑
i=1

d∑
n=1

(µ2
in + β2

in − 2 log βin − 1) 773

A.2 Proof of Proposition 4.1 774

Proof. According to the definitions stated 775

in Proposition 4.1, we have LvertS (i) , 776∑
j∈Ni

(
s(zi,zj)

τ − log
(∑

k∈V\i exp( s(zi,zk)
τ )

))
777

and its NS approximation L̃vertS (i) , 778∑
j∈Ni

(
s(zi,zj)

τ −log
(∑

k∈{j}∪Si exp( s(zi,zk)
τ )

))
. 779

The maximization of LvertS (i) and L̃vertS (i) can be 780

viewed as the maximization of distributions, that is 781

maxLvertS (i)⇔max
∏
j∈Ni

p(u=j|Z, v=i) 782

max L̃vertS (i)⇔max
∏
j∈Ni

p̃(u=j|Z, v=i) 783

where p(u=j|Z, v=i) is defined in (12) and 784

p̃(u|Z, v) =
exp(s(zv, zu)/τ)∑

k∈{u}∪Sv exp(s(zv, zk)/s)
. 785

By maximizing the log probability of p̃(u=j|Z, v= 786

i), we actually encouraging the model to distin- 787

guish which vertex in Sij , {j} ∪ Si is the neigh- 788

bor of vertex i. In other word, the maximization 789

encourages p̃(u=j|Z, v=i) to approach its ground- 790

truth distribution P(nbr=j|v=i), which is defined 791

as 792

P(nbr=j|v=i)

=
P(u=j|v=i)

∏
l 6=j q(u=l)∑

k∈Sij P(u=k|v=i)
∏
l 6=k q(u=l)

=

P(u=j|v=i)
q(u=i)∑

k∈Sij
P(u=k|v=i)
q(u=k)

793

where P(u|v) = 1
|Nv | for u ∈ Nv and 0 otherwise, 794

is the ground-truth distribution of p(u|Z, v). If we 795

further assume that the score function s(zi, zj) is 796

sufficiently expressive, we have 797

p(u=j|Z, v=i) = P(u=j|v=i)
p̃(u=j|Z, v=i) = P(nbr=j|v=i)

798

Since q(u) is a uniform distribution, we have 799

exp(s(zv, zu)) ∝ P(u|v) = p(u|Z, v), 800
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Distance Title/Subject Category

query Crypto is for hard-core hackers & spooks only crypt
5 RE: Once tapped, your code is no good any more crypt

10 RE: Secret algorithm [Re: Clipper Chip and crypto key-escrow] crypt
20 RE: Do we need the clipper for cheap security? crypt
50 RE: AD conversion mac.hardware
70 RE: Looking for MOVIES w/ BIKES motorcycles
90 RE: Atlanta Hockey Hell!! hockey

Table 2: The documents with Hamming distances of 5, 10, 20, 50, 70, and 90 to the query of the 128-bit hash
codes on the 20Newsgroups dataset.

for all i, j ∈ V . Then, the following relation holds801

max L̃vertS (i)⇔ maxLvertS (i),802

in the sense that at their optimal points, both of803

them can have the distribution pS(u|Z, v) equal to804

the same distribution P(u|v).805

A.3 Model Architecture Details806

Encoder Encoder consists of one fully connected807

layer to project the raw feature into the latent space.808

Specifically, given xi, µi = sigmoid(F1(xi)/0.1)809

and σi = softplus(F2(xi)), where F1 and F2 are810

one-layer feed-forward neural networks and 0.1 is811

temperature for a faster convergence speed. Then,812

by utilizing reparameterization trick, zi = µi + ε�813

σi, where ε ∼ N (0, Id) and � denotes element814

wise product.815

Decoder of documents As indicated in (Shen816

et al., 2018), employing expressive nonlinear de-817

coders likely destroy the distance-keeping prop-818

erty. Therefore, the decoder of documents sim-819

ply consists of an embedding layer and x̂i =820

softmax(zi
TE + bdec).821

A.4 Case Study822

To understand the document retrieval with Ham-823

ming distance intuitively, we present a retrieval824

case of a given query document, which is stated in825

Table 2. We can observe that the topic of the re-826

trieved document becomes more irrelevant with the827

increase of the Hamming distance, demonstrating828

that the Hamming distance can effectively measure829

the relevance of documents.830
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