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Abstract
A key challenge in video question answering is how
to realize the cross-modal semantic alignment be-
tween textual concepts and corresponding visual
objects. Existing methods mostly seek to align
the word representations with the video regions.
However, word representations are often not able
to convey a complete description of textual con-
cepts, which are in general described by the com-
positions of certain words. To address this issue,
we propose to first build a syntactic dependency
tree for each question with an off-the-shelf tool
and use it to guide the extraction of meaningful
word compositions. Based on the extracted com-
positions, a hypergraph is further built by viewing
the words as nodes and the compositions as hyper-
edges. Hypergraph convolutional networks (HCN)
are then employed to learn the initial representa-
tions of word compositions. Afterwards, an op-
timal transport based method is proposed to per-
form cross-modal semantic alignment for the tex-
tual and visual semantic space. To reflect the cross-
modal influences, the cross-modal information is
incorporated into the initial representations, lead-
ing to a model named cross-modality-aware syntac-
tic HCN. Experimental results on three benchmarks
show that our method outperforms all strong base-
lines. Further analyses demonstrate the effective-
ness of each component, and show that our model is
good at modeling different levels of semantic com-
positions and filtering out irrelevant information.

1 Introduction
Video question answering (VideoQA) requires systems to un-
derstand the visual information and infer an answer for a nat-
ural language question from it. It has emerged as an impor-
tant task with notable development towards bridging the gap
between computer vision and natural language. VideoQA
is challenging as it needs to understand the complex cross-
modal relation between natural language question and video.

To capture the visual-language relation, some works have
been proposed to utilize bilinear pooling operation or spatial-
temporal attention mechanism to allign the video and textual
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features [Jang et al., 2019; Seo et al., 2021]. Some meth-
ods also proposed to use the co-attention mechanism [Jiang
and Han, 2020; Li et al., 2021] to align multi-modal features,
or use memory-augmented RNN [Yin et al., 2020] or graph
memory mechanism [Liu et al., 2021] to perform relational
reasoning in VideoQA. Recently, DualVGR [Wang et al.,
2021] devises a graph-based reasoning unit and performs a
word-level attention to obtain the question-related video fea-
tures. In these methods, a cross-modal alignment between
textual concepts and visual objects is attempted to be found,
which, however, is mostly done at the word level, i.e., align-
ing the representations of words with visual objects/frames.
However, a word representation (even the contextual repre-
sentation obtained from LSTM) is often not able to convey
a complete description of a textual concept, which plays an
essential role in video question answering. For instance, to
answer the question “What is the girl in green sitting on?” as
seen in Fig. 1, the model need to understand the textual con-
cepts of “girl in green”, “girl sitting on” etc., then align them
with the corresponding video regions. But if the alignment is
done at the word level, the word “green” will be aligned with
all green objects in the video, e.g., the green painting on the
wall. Obviously, this is not the real intent of this question. In
a question, there are often many textual concepts at different
semantic levels, such as “green”, “girl in green” and “girl in
green sitting on” etc. Therefore, in the task of VideoQA, it is
extremely beneficial to identify meaningful textual concepts
at different semantic levels. A textual concept is generally
described by a compositions of word that are not necessary to
be adjacent, thus we cannot simply use the chunks of consec-
utive words to represent them.



To obtain meaningful compositions of words, we find that
this problem is closely related to the syntactic dependency
tree [Tai et al., 2015], which describes the dependence struc-
ture of words in a sentence. We notice that every subtree can
be approximately used to represent a meaningful composi-
tion of words that represents a textual concept, as illustrated
in Fig. 2. Moreover, different-level textual concepts can be
effectively captured by the subtrees of different orders. Thus,
by building a syntactic dependency tree for questions with an
off-the-shelf tool, we are able to obtain a set of compositions
of words that representing different textual concepts. A hy-
pergraph is further built by viewing the words as nodes and
the compositions as hyperedges. Hypergraph convolutional
networks (HCN) are then employed to learn the initial rep-
resentations of these compositions (textual concepts). Given
the initial representations, an optimal transport (OT) based
alignment mechanism is developed to align the textual con-
cepts and visual objects, which has been shown to be bet-
ter at producing more accurate and sparser alignment than
methods of directly using dot-product to compute the simi-
larities (e.g., cosine similarity) [Niculae and Blondel, 2017;
Chen et al., 2020]. With the cross-modal alignment, we fur-
ther propose to update the initial composition and video rep-
resentations by incorporating the relevant cross-modal infor-
mation into them. To demonstrate the effectiveness of our
approach, we compare our approach with competitive base-
lines on three benchmark VideoQA datasets, including TGIF-
QA [Jang et al., 2017], MSVD-QA [Xu et al., 2017], and
MSRVTT-QA [Xu et al., 2016; Xu et al., 2017]. The experi-
mental results show that SCAN1 outperforms all strong base-
lines and further analyses verify the validity of each compo-
nent. Qualitative analysis further illustrates that our methods
performs better in matching the video information based on
semantic composition of text, and also in alleviating noise.

2 Methodology
In this section, we first briefly introduce the VideoQA task
with basic notation, and then describe the definition and con-
struction of the syntactic hypergraph . Based on the syntactic
hypergraph, we present our cross-modality-aware syntactic
hypergraph convolutional network to model the multi-modal
interaction between the question and the video, where the op-
timal transport is employed for the alignment.

2.1 Preliminaries
Task Definition Given a video V and a question Q, the
VideoQA task requires the system to find the answer a ∈ A
with maximum probability p(a|V,Q, θ), where θ denotes the
model parameters. Answers for VideoQA task are usually
organized in two forms, i.e., open-ended form and multiple-
choice form. The open-ended answer is represented as a free-
form text, while the answer of each multiple-choice question
comes from a set with fixed number of answer candidates.

Multi-modal Features Following previous works for
VideoQA [Park et al., 2021] in which several consecutive

1SCAN stands for Semantic Composition and Alignment with
Cross-Modality-Aware Syntactic Hypergraph Convolution Network.
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Figure 2: Illustration of syntactic hypergraph construction.

frames in a video will be combined into one clip, we will
first divide a video into several clips of the same length.
Then we separately employ the pre-trained ResNet [He et
al., 2016] and ResNeXt-101 [Hara et al., 2018] model on
each frame and clip to extract the frame-wise appearance fea-
ture matrix F ∈ RNf×dv and clip-wise motion feature ma-
trix M ∈ RNc×dv , where dv is the dimension of video fea-
ture (usually to be 2048), and Nf and Nc denote the num-
ber of frames and clips, respectively. For question Q, we
follow the previous work [Jiang and Han, 2020] to repre-
sent each word with the pre-trained GloVe [Pennington et al.,
2014] word embedding and obtain question embedding ma-
trix Q ∈ RNw×dw , where Nw is the number of word in a
question, and dw denotes the dimension of word embedding
(usually to be 300).

2.2 Syntactic Hypergraph
In this part, we first introduce the definition of hypergraph and
the advantage of modeling semantic compositons of words
with hypergraph. Then, we describe how to construct hyper-
graph under the guidance of syntactic dependency tree.

Hypergraph Definition Let G = {V, E} denote a hyper-
graph, where V is a set containing Nv vertices and E is a set
containing Ne hyperedges. Each hyperedge ε ∈ E denotes
a set containing any numbers of vertices. The hypergraph
can be represented by an incidence matrix H ∈ RNv×Ne

where Hi,ε = 1 if the hyperedge ε ∈ E contains the ver-
tex vi ∈ V , otherwise 0. For example, if there are vertices
V = {“green”, “girl”, “sitting”}, one possible hyperedge
could be the set ε = {“green”, “girl”}. We represent the
semantic compositions of words with the hypergraph because
the characteristics of hyperedge perfectly fit our assumption
that a textual concept is represented by a set-like semantic
composition of words. Therefore, it provides us with flexibil-
ity and capability to model complex interactions of words in
the view of semantic composition.

Syntactic Hypergraph Construction Since the semantic
composition phenomenon in nature language is usually re-
lated to the syntactic properties [Tai et al., 2015], we take
the syntactic information (i.e. dependency syntax tree) as
guidance to model the semantic composition of a question.
Specifically, we apply off-the-shelf Stanza2 toolkit on a given
question to automatically generate the corresponding syntax
tree, which represents the hierarchical syntactic relations of
words. As the example shown in Fig.2, each leaf node in the

2https://github.com/stanfordnlp/stanza



syntax tree is a word, then each subtree can be viewed as a
case of semantic composition of corresponding words. There-
fore, we define each hyperedge as the set of words in each
subtree. We travel the syntax tree in a hierarchical bottom-up
manner to find all the subtrees of the syntax tree, and finally
build all hyperedges with those subtrees.

Specifically, we describe the process of subtree gener-
ation method as follows. The algorithm begins by tak-
ing each leaf node as a subtree. Then we generate more
subtrees by recursively adding higher-order branch nodes
to the initial trees in a bottom-up manner. In each step,
for each branch node, we add it to all its connected
subtrees to generate more trees. Take the branch node
“girl” in Fig. 2 as an example, we add “girl” to two
connected subtrees {“in”, “green”} and {“sitting”, “on”}
to generate two new subtrees {“girl”, “in”, “green”} and
{“girl”, “sitting”, “on”}. Due to space limit, the pseudo
algorithm of our subtree generation is given in Appendix.

2.3 Cross-Modality-Aware Syntactic Hypergraph
Convolutional Network

With the syntactic hypergraph, we now propose a novel cross-
modality-aware syntactic hypergraph convolutional network
to incorporate cross-modal information into the initial rep-
resentations, in contrast to the vanilla hypergraph convolu-
tional network that is initially designed to model the informa-
tion propagation between nodes with hyperedge as the bridge
[Feng et al., 2019]. The model mainly includes three steps:
1) Initial hyperedge representation learning: learning the
initial hyperedge (composition) representations from node
(word) representations; 2) Cross-modal alignment: finding
cross-modal alignment between textual concepts and visual
objects; 3) Cross-modality-aware representations updat-
ing: Updating the representations of hyperedges and videos
by incorporating the cross-modal information into them.

Initial Hyperedge Representation Learning The first step
is to gather node representations to produce the initial hyper-
edge representation to model the semantic composition pro-
cess of words. We take contextual features of question words
Q (Sec. 2.1) to initialize the node representations. Then, we
gather the node representations to produce the corresponding
hyperedge representations as:

X = D−1
e HTQW , (1)

where H is the 0-1 incidence matrix representing whether
a node is connected by a hyperedge (Sec. 2.1), and X ∈
RNs×dw contains the representation of all Ns hyperedges,
W ∈ Rdw×dw is a weight metrix, and De is the diagonal
matrix denoting the degree of the hyperedge, which is de-
fined as the number of the node connected by a hyperedge.
It can be seen that, the multiplication operation HTQ in
(1) performs the information gathering of words in a hyper-
edge. Since each hyperedge aggregates information from a
set of nodes that probably represents a textual concept, the
question-video alignment problem is then approximately re-
duced to the matching problem between hyperedge represen-
tations and video features.

Cross-Modal Alignment via Optimal Transport Given
the initial hyperedge representations X , we now present how
to align the textual concepts and video frames. What we
want to obtain is an alignment matrix Gxf ∈ RNs×Nf ,
whose (i, j)-th element can reflect the degree of alignment
between the i-th textual concept and the j-th frame. In this
paper, inspired by recent success of optimal transport (OT)
in the alignment of sole textual and visual space [Chen et
al., 2020], we propose to apply it to align the cross-modal
spaces, i.e., the textual and visual semantic spaces. Specifi-
cally, by viewing the hyperedge representations {xi}Ns

i=1 and
video frame representations {fj}

Nf

j=1 as two empirical prob-
ability distributions, we can define an optimal transport plan
π∗ ∈ RNs×Nf

+ that will transport the features from textual
concept space to video frame space with minimum trans-
portation cost. Mathematically, the optimal transport plan is
obtained by solving the following optimization problem

π∗ = argmin
π∈ΠI

∑
ij

πijc(xi,fj)

 , (2)

where ΠI denotes the set of all feasible transport plans, which
is composed of all Ns × Nf non-negative matrices whose
elements are summed to be 1; and the cost function c(·, ·) is
defined as

c(xi,fj) = 1− xiTx(fjTf )
T

∥xiTx∥ · ∥fiTf∥
; (3)

and Tx ∈ Rdw×d and Tf ∈ Rdv×d are used to transform the
textual and visual features into the same semantic space. It
can be seen that if the i-th textual concept and j-th frame are
semantically relevant, the cost c(xi,fj) will be small, other-
wise it will be large. Thus, if the i-th hyperedge is closely
relevant to the j-th frame, then π∗

ij will be assigned a large
value, otherwise a value close to 0 will be assigned. There-
fore, in this paper, the optimal transport plan π∗ is directly
used as the alignment weight matrix, that is,

Gxf = π∗. (4)
It is shown in our experiments that this method tends to pro-
duce a sparser alignment matrix Gxf than the method of di-
rectly using dot-product to compute the similarity, and also
leads to better results. Generally, the optimization problem
(2) can not be solved exactly. In this paper, an off-the-shelf
differentiable approximate method proposed in [Xie et al.,
2020] is borrowed to obtain the optimal matrix π∗ approx-
imately, where the concrete algorithm is presented in the Ap-
pendix. In a similar way, an alignment matrix Gxm that
reflects the alignment degree between hyperedge representa-
tions X and clip features M can also be obtained.
Cross-Modality-Aware Representations Updating Given
the alignment matrices Gxm and Gxf , we now leverage them
to improve the representations of hyperedges and video by
incorporating the relevant cross-modal information into the
initial representations. Specifically, we propose to compute
the influence from video to hyperedge Xv→x ∈ RNs×d and
the influence from hyperedges to frame Fx→f ∈ RNf×d as
Xv→x=LayerNorm(softmax(Gxm)MWxm

+softmax(Gxf)FWxf+XWx),
(5)



Fx→f = LayerNorm(softmax(GT
xf )XWfx+FWf ), (6)

where Wx and Wfx, Wf , Wxm, and Wxf are trainable
model parameters; the softmax(·) is applied to the matrix
in row-wise; and LayerNorm(·) [Ba et al., 2016] denotes
layer normalization, which is used for more stable training.
Similar to Fx→f , we can also compute the influence from
hyperedges to clip features Mx→m. With the cross-modal
influences Xv→x, Fx→f and Mx→m, we can now incorpo-
rate them into the original representations and obtain cross-
modality-aware representations, that is,

X̃ = LayerNorm(Xv→xWv→x +X), (7)

F̃ = LayerNorm(Fx→fWx→f + F ), (8)

M̃ = LayerNorm(Mx→mWx→m +M), (9)

where Wv→x, Wx→m and Wx→f are trainable model pa-
rameters. Actually, X̃ are the video-aware hyperedge repre-
sentations, while F̃ and M̃ are the question-aware frame and
clip representations. Finally, given the video-aware hyper-
edge representations X̃ , we can use it to get the video-aware
node (word) representations

Q̃ = D−1
v HX̃W̃ , (10)

where W̃ is a trainable model weights, and Dv is the di-
agonal matrix with diagonal element being the node degree,
which is defined as the number of hyperedges connecting to
each node. It can be seen that multiplying the incidence ma-
trix H in (10) can be viewed as updating the node represen-
tation via aggregating information from all the connected hy-
peredges. The computation above can be seen as a transfor-
mation block from {Q,F ,M} to {Q̃, F̃ ,M̃}. Obviously,
we can stack more such transformation blocks and constitute
a deeper model. The influence of depth will be discussed in
the experiments.

2.4 Prediction and Training
Given the cross-modality-aware representations Q̃, F̃ and
M̃ , we first project them into a common output space of di-
mension do, and then concatenate the projected representa-
tions into one matrix Y ∈ R(Nw+Nf+Nc)×do . Afterwards, a
self-attention pooling function is applied on Y to obtain the
final representation of the entire task y ∈ Rdo as

y = [softmax(LeakyReLU(Y W o
1 )W

o
2 )]

T
Y , (11)

where W o
1 ∈ Rdo×do and W o

2 ∈ Rdo×1 are trainable model
parameters. We design different classifiers for different types
of VideoQA tasks, into which the output vector y will be fed
to predict the answer. For the case of the open-ended format,
the output y is fed into a linear classifier that outputs the prob-
abilities over the candidates in an answer set A. The classifier
is trained by minimizing the cross-entropy loss. It is worth
noting that we treat the number counting problem (ranging
from 0 to 10) as a regression problem and a L2 regulariza-
tion is added into the training loss. On the other hand, for the
multiple-choice format, we follow previous work HGA [Jiang

and Han, 2020] to concatenate the question with every an-
swer candidate from Aq and generate Na candidate question-
answer sequences for each question. Then, these sequences
are fed into our model to produce the output vector {yi}Na

1 ,
which are then fed into a linear regression function to output
Na scores for every candidate answer. We train our model by
minimizing the hinge loss as

L =
1

|Q|

|Q|∑
j=1

Na∑
i=1

max(0, 1 + sji − sjt ), (12)

where Q is the set of questions; sji denotes the output score
for the i-th answer of the j-th question; and t represent the
number of ground-truth answer of the j-th question. In prac-
tice, we only need to use a mini-batch from the question set
Q for every iteration.

3 Related Work
The VideoQA task requires machine to understand the visual-
language correlation [Jang et al., 2019; Le et al., 2020;
Zhang et al., 2021; Wang et al., 2021; Guo et al., 2021]. To
do this, MDAM [min Kim et al., 2018] and PSAC [Li et al.,
2019] proposes to adopt the self-attention based approaches
to learn the correlation between each frame and question. To
enhance the frame-question correlation, L-GCN [Huang et
al., 2020] and HAIR [Liu et al., 2021] first extracts the object
information from each frame and integrate both object-level
and frame-level information to enhance the frame-question
correlation. Some researches have attempted to capture more
fine-grained visual-language correlation. MASN [Seo et al.,
2021] introduce frame-level and clip-level modules to simul-
taneously model different-level correlation between visual in-
formation and question. RHA [Li et al., 2021] proposed to
use hierarchical attention network to further model the video
subtitle-question correlation. There are also researches that
adopt the memory-augmented approaches to capture the cor-
relation [Fan et al., 2019; Yin et al., 2020]. Although these
works have effectively capture the visual-language correla-
tion, they ignore the syntactic compositional semantics of
fine-grained concepts in the question, our SCAN bridges this
gap by introducing a syntactic hypergraph and performing
visual-aware hypergraph convolution.

4 Experiments
4.1 Datasets and Baselines
Datasets: Experiments are conducted on three benchmarks,
including TGIF-QA [Jang et al., 2017], MSVD-QA [Xu et
al., 2017], and MSRVTT-QA [Xu et al., 2017] datasets,
where the TGIF-QA dataset involves four sub-tasks (i.e., Ac-
tion, Transition, FrameQA and Count). Details of the three
datasets can be found in the Appendix. Please note that we
use accuracy (Acc.) as the evaluation metric for all the ex-
periments, except repetition count task on TGIF-QA dataset,
which uses the Mean Squared Error (MSE).
Baselines: We compare our model with the following strong
baselines: AMU [Xu et al., 2017], ST-VQA [Jang et al.,
2017], Co-Mem [Gao et al., 2018], HME [Fan et al., 2019],



Method Action Transition FrameQA Count↓

ST-VQA 60.8 67.1 49.3 4.40
Co-Mem 68.2 74.3 51.5 4.10
HME 73.9 77.8 53.8 4.02
HGA 75.4 81.0 55.1 4.09
HCRN 75.0 81.4 55.9 3.82
L-GCN 74.3 81.1 56.3 3.95
QueST 75.9 81.0 59.7 4.19
B2A 75.9 82.6 57.5 3.71
HAIR 77.8 82.3 60.2 3.88

SCAN 79.8 84.3 61.0 3.89

Table 1: Performances on TGIF-QA dataset.

Method What Who How When Where All
AMU 20.6 47.5 83.5 72.4 53.6 32.0
ST-VQA 18.1 50.0 83.8 72.4 28.6 31.3
Co-Mem 19.6 48.7 81.6 74.1 31.7 31.6
HME 22.4 50.1 73.0 70.7 42.9 33.7
TSN 25.0 51.3 83.8 78.4 59.1 36.7
HGA 23.5 50.4 83.0 72.4 46.4 34.7
HCRN — — — — — 36.1
QueST 24.5 52.9 79.1 72.4 50.0 36.1
B2A — — — — — 37.2
HAIR — — — — — 37.5
DualVGR 28.7 53.8 80.0 70.7 46.4 39.0

SCAN 29.5 55.7 82.4 72.4 42.9 40.3

Table 2: Performances on MSVD-QA dataset.

TSN [Yang et al., 2019], HGA [Jiang and Han, 2020],
HCRN [Le et al., 2020], L-GCN [Huang et al., 2020],
QueST [wen Jiang et al., 2020], Bridge to Answer (shorted
as B2A) [Park et al., 2021], HAIR [Liu et al., 2021], Du-
alVGR [Wang et al., 2021]. It is worth mentioning that the
performance of baselines on certain datasets are taken from
the corresponding papers.

4.2 Main Results
The experimental results of our model and the strong base-
lines on TGIF-QA, MSVD-QA and MSRVTT-QA datasets
are shown in Table 1, Table 2 and Table 3, respectively,
with the best performance highlighted in bold. For TGIF-QA
dataset, our model outperforms the recent baseline HAIR by
2.6% on Action, 2.4% on Transition, and 1.3% on FrameQA.
It is worth noting that the B2A baseline also involves syn-
tactic information for VideoQA, but it only takes the whole
syntactic graph as a tree, without considering the multi-
level compositional semantics of the syntactic information.
It can be seen that our model outperforms B2A model by
5.1%, 2.1%, and 6.1% on Action, Transition, and FrameQA
sub-tasks, respectively, showing the effectiveness of model-
ing multi-level compositional semantics of questions. The
MSVD-QA and MSRVTT-QA benchmarks are more chal-
lenging as they only provide open-ended questions. It can
be observed that our model also outperforms the most recent
DualVGR model targeting on computing question-attended
video representation by a large margin (3.3% and 4.5% acc.
on MSVD-QA and MSRVTT-QA), which shows that seman-
tic composition is essential for representing the semantic

Method What Who How When Where All
AMU 26.2 43.0 82.4 72.5 30.0 32.5
ST-VQA 24.5 41.2 78.0 76.5 34.9 30.9
Co-Mem 23.9 42.5 74.1 69.0 42.9 32.0
HME 26.5 43.6 82.4 76.0 28.6 33.0
TSN 27.9 46.1 84.1 77.8 37.6 35.4
HGA 29.2 45.7 83.5 75.2 34.0 35.5
HCRN — — — — — 35.6
QueST 27.9 45.6 83.0 75.7 31.6 34.6
B2A — — — — — 36.9
HAIR — — — — — 36.9
DualVGR 29.4 45.6 79.8 76.7 36.4 35.5

SCAN 30.3 48.8 81.5 78.0 37.2 37.1

Table 3: Performances on MSRVTT-QA dataset.
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Figure 3: Performances of SCAN variants that exclude or replace
certain components on MSVD-QA and MSRVTT-QA datasets.
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Figure 4: The performance of SCAN under different number l of the
video-aware hypergraph convolutional network layers on Action,
Transition, and FrameQA tasks.

meaning of the question.

4.3 Ablation Studies
We conduct in-depth analyses on how different components
and parameters contribute to the model performance. To this
end, we evaluate the performance with different variants of
our model from two aspects: (1) excluding or replacing cer-
tain components, (2) changing the values of hyperparameters.

Impacts of Different Components We evaluate the effec-
tiveness of different components by eliminating four mod-
ules. 1) Syntactic tree (SCAN w/o S): we remove the syn-
tactic hypergraph and only consider the word-level cross-
modality alignment. 2) Optimal transport alignment (SCAN
w/o OT): we remove the optimal transport alignment module
and replace it with a simple dot-product similarity module.
3) Frame-level feature (SCAN w/o F): we remove the frame-
level video feature and only keep the motion-level feature.
4) Clip-level feature (SCAN w/o M): we remove the clip-level
video feature. We compare these four tailored models with
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Figure 5: Visualization of visual-language alignments between semantic composition and video frames learned by our model.
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Figure 6: Visualization of different attention matrices.

the complete SCAN model on the MSVD-QA and MSRVTT-
QA datasets. The results are showed in Fig. 3. It can be seen
that eliminating syntactic hypergraph (SCAN w/o S) leads to
significant performance drop, suggesting the importance of
modeling compositional semantics of the question. It can
be further observed that OT alignment (SCAN w/o OT) also
largely contributes to the model performance, demonstrating
the necessity of filtering out irrelevant video information by
using a more sparser alignment matrix. Also, eliminating
frame-level and clip-level features, i.e., SCAN (w/o F) and
SCAN (w/o M), also harms the final performance, which indi-
cates the importance of simultaneously modeling visual fea-
tures at different levels.
Impacts of the Number of Computational Blocks We an-
alyze the impact of using different number of computation
blocks in the proposed HCN. Fig. 4 shows the performance
on Action, Transition and FrameQA sub-tasks of TGIF-QA
dataset with the number changing from 1 to 5. It can be ob-
served that the optimal number varies from task to task, e.g.,
l = 2 for Transition and Frame QA, and l = 3 for the Action
subtask. This phenomenon indicates that different question
types emphasize different levels of compositional semantics
of questions, and we can increase the depth of the interac-
tion layers to support more complex task, or find a tradeoff
between performance and efficiency.

4.4 Qualitative Analysis
Visualization of language-vision Alignments In order to
visualize the alignments between different semantic compo-

sition and the visual feature, we take the question “what is
the soccer player wearing a uniform gets into the net” ex-
tracted from frameQA as an example. We visualize the
aligned videos based on different levels of semantic composi-
tion (i.e., word-level, phrase-level and sentence-level). Then
we extract 10 frames, which in temporally ranked, with the
highest alignment weights for each semantic level. The visu-
alization is shown in Fig. 5, where frames with higher atten-
tion weights are clearer and vice verse. It can be seen that, the
word net is aligned with most frames containing nets. When
it is composed to phrase-level semantics (“gets into the net”),
the matched frames intend to focus on the scene that the soc-
cer goes into the net. Finally, for sentence-level, we find that
key frames focus on the entire process of a football player
kicking the ball into the net. The results show that SCAN can
better model the semantic composition phenomenon and its
multi-modal alignment with the visual information.
Visualization of Different Alignment Matrices To ana-
lyze whether our OT Alignment mechanism indeed generate
sparse alignment scores, we visualize the OT alignment ma-
trix and compare it with the matrix generated by simply dot-
product approach, and plots one typical example in Fig. 6.
It can be seen that the OT method returns a sparser align-
ment matrix, while dot-product-based attention is effectively
dense. This emphasizes the effectiveness of OT-based soft
alignment in concentrating more relevant cross-modal infor-
mation.

5 Conclusion
In this paper, we propose to model the semantic composi-
tion phenomenon of question with a syntactic hypergraph
for VideoQA. We first build the syntactic hypergraph based
on the syntactic dependency tree in a hierarchical bottom-up
manner. Then we propose a cross-modality-aware syntactic
hypergraph convolution network to align the cross-modal se-
mantic information. To enhance the cross-modal alignment,
we adopt the optimal transport attention mechanism to obtain
a sparse matching. Experiments show that our method out-
performs strong baselines on three benchmark datasets and
verify the effectiveness of each component.
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Algorithm 1 OT-based Attention Mechanism OT (X,F )

1: Input: Hyperedges matrices X = {xi}Ns
1 frame-level

matrices F = {fj}
Nf

1 .
2: b = 1

Ns
1Ns , π(1) = 1Ns1

T
Nf

, Cij = e−c(xi,fj).
3: for t = 1, 2, · · · , 10 do
4: Γ = C ⊙ π(t).
5: a = 1

NsΓb , b = 1
NfΓTa

.

6: π(t+1) = diag(a)Γdiag(b).
7: end for
8: Return π

A More Details for the Datasets
Experiments are conducted on three benchmark datasets, including
TGIF-QA [Jang et al., 2017], MSVD-QA [Xu et al., 2017], and
MSRVTT-QA [Xu et al., 2017] datasets.

1) TGIF-QA [Jang et al., 2017] is a prominent large-scale bench-
mark dataset for VideoQA task that consists of 165K Q&A pairs
based on 72K animated GIFs. The dataset defines four tasks: (1)
Repeating action (Action) requires to identify the action repeated
for a given number of times from 5 candidate answers; (2) State
transition (Transition) also deals with 5 candidate answers aiming
to identify the transition of two states; (3) Frame QA (FrameQA)
is an open-ended task that needs to find a key frame in the video to
indicate the correct answer from a pre-defined dictionary; (4) Rep-
etition count (Count) also contains an open-ended numbers of task
to count the number of occurrences of an action.

2) MSVD-QA [Xu et al., 2017] is an open-ended VideoQA
dataset, which is divided into 5 different types, including what,
who, how, when, and where. The dataset contains 1970 short
video clip, 50505 Q&A pairs and 1000 pre-defined answers.

3) MSRVTT-QA [Xu et al., 2017] is similar to MSVD-QA. It is
also divided into the same five types with 1000 pre-defined answers.
The MSRVTT-QA is generated from the MSRVTT [Xu et al., 2016]
dataset, containing 10K videos and 243K Q&A.

B Algorithm for OT
We adopt an off-the-shelf differentiatable approximate method [Xie
et al., 2020] to obtain the OT matrix π∗, which is summarized in
Algorithm 1.

C Subtree Generation Algorithm
Algorithm 2 shows our subtree generation algorithm
SubTreeGen(·, ·) used in our syntactic hypergraph construc-
tion. The algorithm begins by taking each leaf node as a subtree.
Then, for the branch node vi, our algorithm first adopts the
recursive GetSubRree(·, ·) on each of the child node of node vi
to obtain the connected subtrees. Secondly, we add node vi to all
connected subtrees to generate more trees. Finally, we directly
apply recursive GetSubRree(·, ·) on node vi to obtain higher level
semantic composition.

Algorithm 2 Subtree Generation Algorithm SubTreeGen(·, ·)
1: Input: Syntactic dependency Tree T , set of vertices V

containing all vertices on the tree.
2: Ts = {} // The set containing all found subtrees.
3: for vi in V do
4: if vi is leaf node then
5: APPEND(Ts, {vi})
6: end if
7: if vi is branch node then
8: for c in Child(T , vi) do // The child of vi
9: APPEND(Ts, {vi,GetSubTree(T , c)})

10: end for
11: APPEND(Ts, {GetSubTree(T , vi)})
12: end if
13: end for
14: Return Ts

Algorithm 3 GetSubTree(T ,c)

1: Input: Syntactic dependency Tree T , node c.
2: if c is leaf node then
3: Return {c}
4: end if
5: T ′

s = {c}
6: for c′ in Child(T , c) do
7: APPEND(T ′

s , GetSubTree(T ,c′))
8: end for
9: Return T ′

s
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