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Unnormalized Probabilistic Model

Unnormalized Probabilistic Models (UPMs) specify probabilistic
desity or mass functions up to an unknown normalizeing constant

pθ(x) =
1

Zθ
Eθ(x),

where Zθ, known as the partition function, is defined as

Zθ =

∫
Eθ(x)dx.

Since without placing a restriction on the normalizing constant, UPMs
are more flexible and can model a more expressive family of probability
distributions.
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Training UPMs

Given a set of training data X = {x1, . . . , xN}, the model parameters θ
can be optimized by minimizing the negative log likelihood

L(θ) := logZθ −
1

N

N∑
i=1

logEθ(xi). (1)

The difficulty rises here is how to handle with the normalizing constant
logZθ. To address this issue, we focus on

Contrastive Divergence

Noise Contrastive Estimation

Score Matching
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Maximum Likelihood Training with MCMC

The gradient of (1) can be written as

∇θL(θ) = ∇θ logZθ −∇θ
1

N

N∑
i=1

logEθ(xi)

=

∫
Eθ(x)

Zθ
∇θ logZθdx− Epd(x) [∇θ logEθ(x)]

= Epθ(x) [∇θ logEθ(x)]− Epd(x) [∇θ logEθ(x)] .

The hardness arises at sampling from pθ(x), since we cannot obtain its
close form due to the notorious partition function.
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Maximum Likelihood Training with MCMC

For sampling from pθ(x), we resort to MCMC sampling. Fpr examples,
we can use Langevin MCMC

xk+1 ← xk +
ε2

2
∇x log pθ(x

k)︸ ︷︷ ︸
=∇x logEθ(x)

+εzk, k = 0, 1, . . . ,K − 1.

When ε→ 0 and K →∞, xK is guaranteed to distributed as pθ(x)
under some regularity conditions.

However, running MCMC till convergence to obtain a samle
x ∼ pθ(x) can be computationally expensive.
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Contrastive Divergence

Objective.

∇θL(θ) = Epθ(x) [∇θ logEθ(x)]− Epd(x) [∇θ logEθ(x)]

Contrastive Divergence (CD) is a popular approximation method to
make MCMC-based learning practical.

In CD, the initial sample is from the empirical data distribution:
x(0) ∼ pd(x).

Then we apply k-step MCMC iteration to generate x(k) for pθ(x),
which has been turn out that lim

k→∞
x(k) ∼ pθ(x).

The gradient can be approximated by CD-k estimator

∇θL(θ) ≈ ∇θ logEθ(x
(k))−∇θ logEθ(x

(0)).

Actually, CD-1 works well.
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Understanding Contrastive Divergence

Maximizing likelihood is equivalent to minimizing the KL divergence
between pd(x) and pθ(x), because

−Ex∼pd(x) [log pθ(x)] = KL(pd(x)||pθ(x))− Ex∼pd(x) [log pd(x)]

= KL(pd(x)||pθ(x))− constant.

Why CD works? Why CD is called divergence?

Denoting p
(k)
θ (x) is the distribution at k-th MCMC iteration, then

in CD, we have p
(0)
θ (x) = pd(x), p

(∞)
θ (x) = pθ(x).

Optimizing the objective of CD-k is equivalent to

argmin
θ

Ex(0)∼pd(x)
[
logEθ(x

(k))− logEθ(x
(0))
]

⇔ argmin
θ

KL(p
(0)
θ (x)||p(∞)

θ (x))−KL(p
(k)
θ (x)||p(∞)

θ (x))︸ ︷︷ ︸
contrastive divergence

.
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Unbiased Contrastive Divergence

Objective.

∇θL(θ) = Epθ(x) [∇θ logEθ(x)]− Epd(x) [∇θ logEθ(x)]

The MCMC approximation of EM[f(x)] is biased, where M is pθ(x)
and f(x) = ∇θ logEθ(x) in CD. The question here is

Can we construct an unbiased MCMC estimation?

This can be achieved by introducing another Markov chain.
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Unbiased Contrastive Divergence

If there exists two Markov chains {at} and {bt} such that

E[f(at)]→ E[f(x)] as t→∞;

E[f(at)] = E[f(bt)] for all t ≥ 0;

For same random time τ , at = bt−1 for all t ≥ τ .

Then we have

EM[f(x)] = EM

[
f(a1) +

∞∑
t=2

(f(at)− f(at−1))

]

= EM

[
f(a1) +

∞∑
t=2

(f(at)− f(bt−1))

]

= EM

[
f(a1) +

τ−1∑
t=2

(f(at)− f(bt−1))

]
.

However, the construction of chains is a highly non-trivial task.
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Adversarially Variational Inference

Epd(x)[log pθ(x)] = Epd(x)[logEθ(x)]− logZθ

= Epd(x)[logEθ(x)]− log

∫
qφ(x)

Eθ(x)

qφ(x)
dx

≤ Epd(x)[logEθ(x)]−
∫
qφ(x) log

Eθ(x)

qφ(x)
dx

= Epd(x)[logEθ(x)]− Eqφ(x)[logEθ(x)]−H(qφ(x))

Adversarial Training.

max
θ

min
φ

Eqφ(x)[logEθ(x)]− Epd(x)[logEθ(x)]−H(qφ(x))
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Score Matching

The basic score matching objective minimizes a discrepancy between
tow distribution called the Fisher divergence

DF (pd(x)||pθ(x)) := Epd(x)
[

1

2
||∇x log pd(x)−∇x log pθ(x)||2

]
. (2)

The first-order gradient function of a log-PDF is called the score
of that distribution. Thus (2) is also known as score matching.

When DF (pd(x)||pθ(x)) = 0, then we have pθ(x) = pd(x).

Note that ∇x log pθ(x) = ∇x logEθ(x)−∇x logZx = ∇x logEθ(x),
thus we can ignore the normalzing term during training.

However, the second term is generally imparactical to calculate
since log pd(x) is unknown.
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Score Matching

DF (pd(x)||pθ(x))

=
1

2

∫
pd(x) (∇x log pd(x)−∇x log pθ(x))2 dx

=
1

2

∫
pd(x)(∇x log pd(x))2dx+

1

2

∫
pd(x)(∇x log pθ(x))2dx

−
∫
pd(x)∇x log pd(x)∇x log pθ(x)dx︸ ︷︷ ︸

I

Integrate by parts:

I = −
∫
∇xpd(x)∇x log pθ(x)dx

= − pd(x)∇x log pθ(x)|∞x=−∞ +

∫
pd(x)∇2

x log pθ(x)dx

=

∫
pd(x)∇2

x log pθ(x)dx
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Score Matching

Score Matching.

DF (pd(x)||pθ(x)) := Epd(x)
[

1

2
||∇x log pd(x)−∇x log pθ(x)||2

]
= Epd(x)

[
1

2
||∇x log pθ(x)||2 + tr(∇2

x log pθ(x))

]
+const

An important downside is that the computation of Hessian matrix is
expensive, thus does not scale to high dimensionality.

Zijing Ou How to train unnomalized probablistic models June 27, 2021 13 / 24



Denoising Score Matching

The main issue that arises in SM is that it only works with
continuously differentiable log pd(x).

However, these conditions may not hold in practice. To alleviate this
difficulty, one can:

Add a bit of noise to each datpoint: x̃ = x+ ε, ε ∼ p(ε);
The resulting noisy data distribution is q(x̃) =

∫
q(x̃|x)pd(x)dx is

smooth;

The Fisher divergence DF (q(x̃|x)||pθ(x̃)) is a proper objective.
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Denoising Score Matching

Denoising Score Matching.

DF (q(x̃)||pθ(x̃)) := Eq(x̃)
[

1

2
||∇x log q(x̃)−∇x log pθ(x̃)||2

]
= Eq(x,x̃)

[
1

2
||∇x log q(x̃|x)−∇x log pθ(x̃)||2

]
+ const.

The main drawback is DF (q(x̃)||pθ(x̃)) 6= DF (pd(x)||pθ(x)). One way
to attenuate the inconsistency is to use a small noise perturbation,
such that q(x̃) ≈ pd(x̃).
As an example, suppose q(x̃|x) = N (x̃|x, σ2I) and σ ≈ 0, we have

DF (q(x̃)||pθ(x̃)) = Epd(x)Ez∼N (0,I)

[
1

2
||z/σ +∇x log pθ(x+ σz)||2

]
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Denoising Score Matching

Denoising Score Matching.

DF (q(x̃)||pθ(x̃)) = Epd(x)Ez∼N (0,I)

[
1

2
||z/σ +∇x log pθ(x+ σz)||2

]
Denoising score matching generally suffers from high variance
when σ ≈ 0.

Note that Ex,z
[
2zT∇x log pθ(x)/σ

]
= 0 and Ez

[
||z||2/σ2

]
= d/σ2.

We can construct a score function to reduce variance

cθ(x, z) = Epd(x)Ez∼N (0,I)

[
2

σ
zT∇x log pθ(x) +

||z||2

σ2
− d

σ2

]
.
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Sliced Score Matching

By adding noise to data, DSM avoids the expensive computation of
second-oder derivatives. However, the objective of DSM corresponds to
the distribution of noise-perturbed data q(x̃), not the original noise-free
data distribution pd(x).

Sliced Score Matching is one alternative to Denoising Score
Matching that is both consistent and computationally efficient.

Sliced Score Matching.

DSF (pd(x)||pθ(x)):=Epd(x)Ep(v)
[

1

2
(vT∇x log pd(x)−vT∇x log pθ(x))2

]
=Epd(x)Ep(v)

[
vT∇2

x log pθ(x)v+
1

2
||∇x log pθ(x)||2

]
where p(v) is a noise distribution, e.g., the standard Gaussian.
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Sliced Score Matching

Sliced Score Matching.

DSF (pd(x)||pθ(x))=Epd(x)Ep(v)
[
vT∇2

x log pθ(x)v+
1

2
||∇x log pθ(x)||2

]
Hessian-vector products:

vT∇2
x log pθ(x)v =

d∑
i=1

d∑
j=1

∂2Eθ(x)

∂xi∂xj
vivj

=
d∑
i=1

∂

∂xi

 d∑
j=1

∂Eθ(x)

∂xj
vj


︸ ︷︷ ︸

:=f(x)

vi,

where f(x) is the same for different values of i.
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Score Matching & Contrastive Divergence

Recall the Langevin MCMC method

xk+1 ← xk − ε2

2
∇x logEθ(x) + εzk.

Contrastive Divergence with 1 step Langevin MCMC

−Epd [∇θ log pθ(x)] = Epd [∇θ logEθ(x)]− Epθ [∇θ logEθ(x)]

≈ Epd [∇θ logEθ(x)]− Ez
[
∇θEθ

(
x− ε2

2
∇x logEθ′(x) + εz

)∣∣∣∣
θ′=θ

]
=
ε2

2
∇θDF (pd(x)||pθ(x)) + o(ε2).

The last equation holds after Taylor series expansion with respect to ε.

Zijing Ou How to train unnomalized probablistic models June 27, 2021 19 / 24



Score-Based Generative Models

When θ is optimal in SM, we have

pd(x) ∝ Eθ∗(x);

∇x log pd(x) = ∇x logEθ∗(x).

One typical application of SM is creating new samples that are similar
to training data, by using Langevin MCMC

xk+1 ← xk +
ε2

2
∇x log pd(x

k)︸ ︷︷ ︸
=∇x logEθ∗ (x)

+εzk, k = 0, 1, . . . ,K − 1.
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Noise Contrastive Estimation

NCE treats the normalized term Zθ as a learnable paramenter and
learns parameters by distinguishing the sample from empirical
distribution pd and noise distribution pn.

We first define a mixture distribution

pn,d := p(y = 0)pn(x) + p(y = 1)pd(x).

The posterior distribution is given by

pn,d(y = 0|x) =
pn(x)

pn(x) + vpd(x)
.

The posterior probability given the noise/model mixture is

pn,θ(y = 0|x) =
pn(x)

pn(x) + vpθ(x)
.
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Noise Contrastive Estimation

The training objective of NCE is

θ∗ = argmin
θ

Epn,d(x) [KL(pn,d(y|x)||pn,θ(y|x))]

= argmin
θ

Epn,d(x,y) [log pn,θ(y|x)] .

When θ is optimal, we have

pn,θ∗(y = 0|x) ≡ pn,d(y = 0|x)

⇔ pn(x)

pn(x) + vpθ∗(x)
≡ pn(x)

pn(x) + vpd(x)

⇔ pθ∗(x) ≡ pd(x).
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Noise Contrastive Estimation & Score Matching

The flexibility of NCE allows adaptation to special properties with
hand-tuned pn(x) and v.

We define the noise distribution as pn(x) = pd(x− v).

The posterior distribution is

pn,θ :=
pθ(x− v)

pθ(x) + pθ(x− v)
.

In this case, the NCE objective reduces to

θ∗ = argmin
θ

Epd [log(1 + Eθ(x)/Eθ(x− v)) + log(1 + Eθ(x)/Eθ(x+ v))]

≈ argmin
θ

1

4
Epd(x)p(v)

[
1

2
||∇x log pθ(x)||2 + vT∇2

x log pθ(x)v

]
+ 2 log 2 + o(||v||2).
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Conclusion

We reviewed some of the modern approaches for the training of
unnormalized probabilistic models.

We focused on maximum likelihood estimation with MCMC
sampling (Contrastive Divergence), Score Matching and Noise
Contrastive Estimation.

We introduced the application of generative models, but did not
cover another aspects, like latent variables models, some
downstream applications.
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