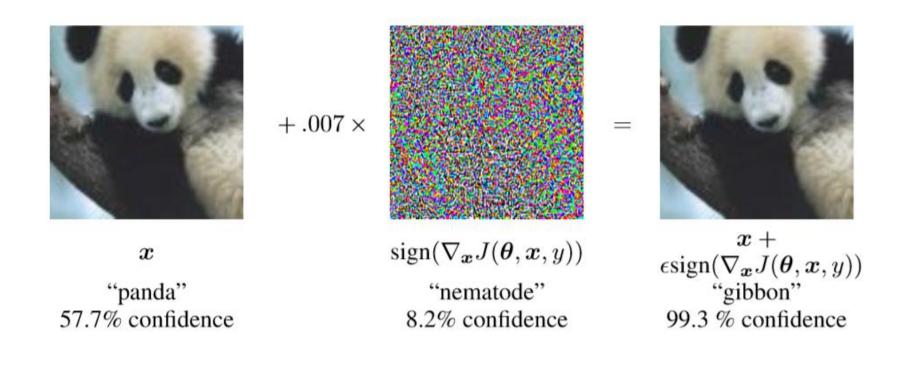
Adversarial Examples in Natural Language Processing

Zijing Ou

Adversarial Examples



Two cores in common:

- the perturbations are small
- the ability of fooling DNN models

Why does it work?

The primary Cause of neural networks' vulnerability to adversarial perturbation is their linear nature [1]

adversarial input

$$ilde{x} = x + \eta \quad ||\eta||_{\infty} < \epsilon,$$

Consider the dot product

$$w^{\top} \tilde{x} = w^{\top} x + w^{\top} \eta$$
.

If w has n dimensions and the average magnitude of an element of the weight vector is m

$$\boldsymbol{w}^{\top}\boldsymbol{\eta} \propto \epsilon mn \qquad \eta = \operatorname{sign}(\boldsymbol{w})$$

[1] ICLR15: EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

How to fix it?

$\begin{array}{|c|c|c|c|c|} \hline x & & & & & & & \\ \hline x & & & & & \\ \hline y & & & & \\ \hline y & & & & \\ 57.7\% & confidence & & & \\ \hline x & & & & \\ \hline y & & & & \\ \hline x & & & & \\ \hline x & & & & \\ \hline y & & & \\ \hline x & & \\ \hline x & & & \\ x & & \\ x & & & \\ \hline x & & & \\ x & & \\ x$

Adversarial Training [1]

$$-\log p(y \mid \boldsymbol{x} + \boldsymbol{r}_{\text{adv}}; \boldsymbol{\theta}) \text{ where } \boldsymbol{r}_{\text{adv}} = \arg\min_{\boldsymbol{r}, \|\boldsymbol{r}\| \leq \epsilon} \log p(y \mid \boldsymbol{x} + \boldsymbol{r}; \hat{\boldsymbol{\theta}})$$

With a linear approximation

$$\boldsymbol{r}_{\mathrm{adv}} = -\epsilon \boldsymbol{g} / \| \boldsymbol{g} \|_2$$
 where $\boldsymbol{g} = \nabla_{\boldsymbol{x}} \log p(y \mid \boldsymbol{x}; \hat{\boldsymbol{\theta}})$

The objective function

$$\tilde{J}(\boldsymbol{\theta}, \boldsymbol{x}, y) = \alpha J(\boldsymbol{\theta}, \boldsymbol{x}, y) + (1 - \alpha) J(\boldsymbol{\theta}, \boldsymbol{x} + \epsilon \operatorname{sign} (\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$$

[1] ICLR15: EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

Virtual Adversarial Training [2]

$$\begin{split} & \operatorname{KL}[p(\cdot \mid \boldsymbol{x}; \hat{\boldsymbol{\theta}}) | | p(\cdot \mid \boldsymbol{x} + \boldsymbol{r}_{\text{v-adv}}; \boldsymbol{\theta})] \\ & \text{where } \boldsymbol{r}_{\text{v-adv}} = \operatorname*{arg \max}_{\boldsymbol{r}, \|\boldsymbol{r}\| \leq \epsilon} \operatorname{KL}[p(\cdot \mid \boldsymbol{x}; \hat{\boldsymbol{\theta}}) | | p(\cdot \mid \boldsymbol{x} + \boldsymbol{r}; \hat{\boldsymbol{\theta}})] \\ & \boldsymbol{r}, \|\boldsymbol{r}\| \leq \epsilon \end{split}$$

With a approximation

$$m{r}_{ ext{v-adv}} = \epsilon m{g} / \|m{g}\|_2$$
 where $m{g} =
abla_{m{s}+m{d}} ext{KL} \left[p(\cdot \mid m{s}; \hat{m{ heta}}) || p(\cdot \mid m{s}+m{d}; \hat{m{ heta}})
ight]$

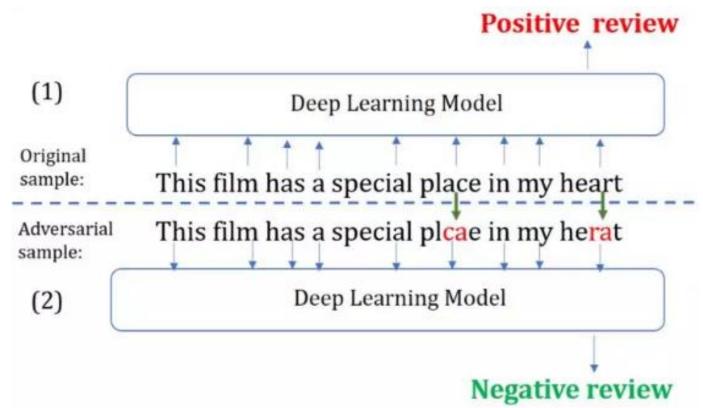
Where **d** is a small random vector with the same dimension as **s**

The objective function

$$\frac{1}{N}\sum_{n=1}^{N}\log p(y^{(n)}|x^{(n)},\theta) + \lambda \frac{1}{N}\sum_{n=1}^{N} \text{LDS}(x^{(n)},\theta)$$

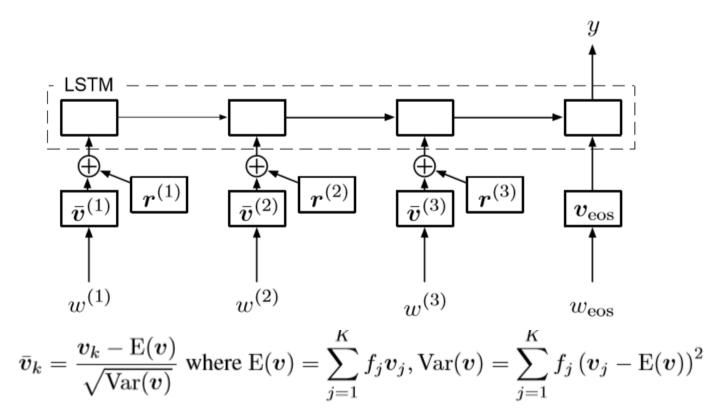
[2] ICLR16: Distributional smoothing with virtual adversarial training

Can it work in text?



We cannot calculate the perturbed inputs for tasks in the NLP field since the inputs consist of **discrete symbols**, which are not a continuous space used in image processing

Applying AdvT to word embedding space [3]



where f_i is the frequency of the i-th word, calculated within all training examples.

$$r^{(n)} = r^{(n)}_{adv} \text{ or } r^{(n)}_{v-adv}$$

[3] ICLR17: Adversarial training methods for semi-supervised text classification

Drawback of applying AdvT to word embedding space

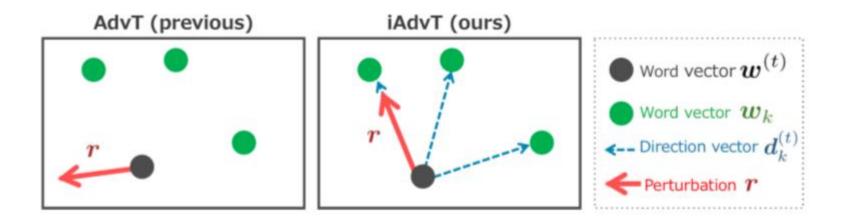
lacks interpretability!!!

- It abandons the generation of adversarial examples interpretable by people.
- We exclusively regard it as a regularizer to stabilize the model.
- It can't generate adversarial examples.

A Trade-Off

well-formed **VS** low-cost (gradient-based)

Interpretable Adversarial Perturbation in Embedding Space [4]



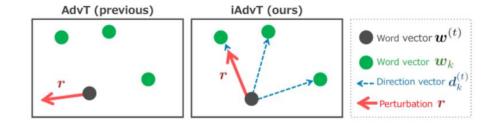
How to realize that?

[4] IJCAI18: Interpretable Adversarial Perturbation in Input Embedding Space for Text

Interpretable Adversarial Perturbation in Embedding Space

We define direction vector $d_k^{(t)}$

$$d_k^{(t)} = rac{ ilde{d}_k^{(t)}}{|| ilde{d}_k^{(t)}||_2}, ext{ where } ilde{d}_k^{(t)} = w_k - w^{(t)}$$



Let $\alpha^{(t)}$ be a |V|-dimensional vector, and let $\alpha_k^{(t)}$ be the k-th factor of $\alpha^{(t)}$ Then, we define

$$\begin{split} r(\boldsymbol{\alpha}^{(t)}) = & \sum_{k=1}^{|\mathcal{V}|} \alpha_k^{(t)} d_k^{(t)} \\ \tilde{X}_{+\boldsymbol{r}(\boldsymbol{\alpha})} = & \left(w^{(t)} + \boldsymbol{r}(\boldsymbol{\alpha}^{(t)}) \right)_{t=1}^T \\ \alpha_{\mathtt{iAdvT}} = & \underset{\boldsymbol{\alpha}, ||\boldsymbol{\alpha}|| \leq \epsilon}{\operatorname{argmax}} \left\{ \ell(\tilde{X}_{+\boldsymbol{r}(\boldsymbol{\alpha})}, \tilde{Y}, \mathcal{W}) \right\} \text{ Approximately, } \alpha_{\mathtt{iAdvT}}^{(t)} = \frac{\epsilon g^{(t)}}{||g||_2}, \ g^{(t)} = \nabla_{\boldsymbol{\alpha}^{(t)}} \ell(\tilde{X}_{+\boldsymbol{r}(\boldsymbol{\alpha})}, \tilde{Y}, \mathcal{W}) \end{split}$$

The Loss function is

$$\mathcal{J}_{\mathtt{iAdvT}}(\mathcal{D},\mathcal{W}) = rac{1}{|\mathcal{D}|} \sum_{(\tilde{X},\tilde{Y})\in\mathcal{D}} \ell(\tilde{X}_{+\boldsymbol{r}(\boldsymbol{lpha}_{\mathtt{iAdvT}})},\tilde{Y},\mathcal{W})$$

But, it still has some problem.....

- It is difficult to make small perturbations along the direction of gradients
- The fluency of the generated examples cannot be guaranteed

Fortunately, there are some excellent models in 9102....

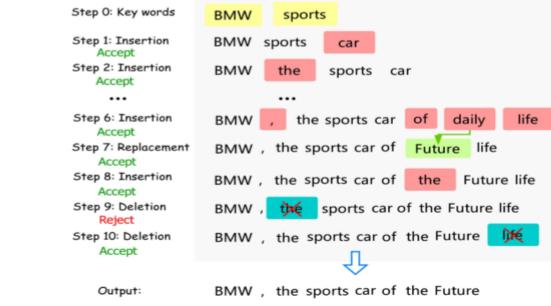
- ACL19: Generating Fluent Adversarial Examples for Natural Languages
- ACL19: Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency

They are both based on statistical models.

Motivation

RNN-based language generation techniques are non-trivial to impose constraints

- Hard constraints, such as the mandatory inclusion of certain keywords in the output sentences
- Soft constraints, such as requiring the generated sentences to be semantically related to a certain topic



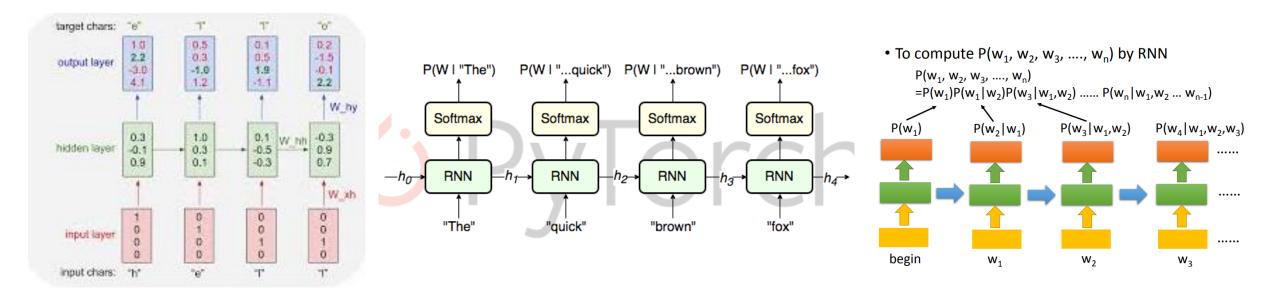
[5] AAAI19: CGMH Constrained Sentence Generation by Metropolis-Hastings Sampling

Language model

A statistical language model is a probability contribution over sequences of words.

$$P(w_1, w_2, \dots, w_n) = P(w_1)P(w_2|w_1) \cdots P(w_n|w_1, \dots, w_{n-1})$$

RNN-based Language model



detail balance condition

When the probability transition matrix of aperiodic Markov chains satisfies

 $\pi(i)p(j|i) = \pi(j)p(i|j)$

The final state $\pi(.)$ is the stable distribution

Metropolis Hastings(MH) Sampling

1. Initialise
$$x^0$$

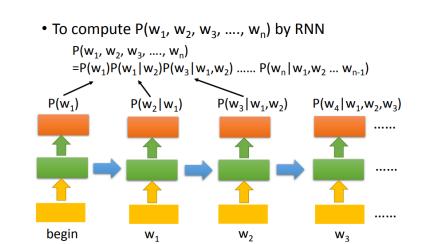
2. For $i = 0$ to $N - 1$
 $u \sim U(0, 1)$
 $x^* \sim q(x^*|x^{(i)})$
if $u < \alpha(x^*) = \min\left(1, \frac{\pi(x^*)q(x|x^*)}{\pi(x)q(x^*|x)}\right)$
 $x^{(i+1)} = x^*$
else
 $x^{(i+1)} = x^{(i)}$
http://blog.csdn.net/baimafujinj

The MH framework is flexible, cause

- The **proposal distribution** could be **arbitrary**, as long as the Markov chain is irreducible and aperiodic
- The stationary distribution could be arbitrary, because MH algorithm can guarantee detail balance condition
 How to propose proposal & stationary distribution

proposal distribution

$$[p_{replace}, p_{insert}, p_{delete}] = \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$$



Replacement

The sentence at the current step is $\mathbf{x} = [w_1, \cdots, w_{m-1}, w_m, w_{m+1}, \cdots, w_n]$

Choose a new word for the m-th position by the conditional probability

$$g_{\text{replace}}(\mathbf{x}'|\mathbf{x}) = \pi(w_m^* = w^c | \mathbf{x}_{-m}) = \frac{\pi(w_1, \cdots, w_{m-1}, w^c, w_{m+1}, \cdots, w_n)}{\sum_{w \in \mathcal{V}} \pi(w_1, \cdots, w_{m-1}, w, w_{m+1}, \cdots, w_n)}$$

However, it is difficult to compute $\pi(w_m^* = w^c | w_{-m})$ for all $w^c \in V$

Replacement

Build a **pre-selector** Q to discard w_c with low forward or backward probability

$$Q(w^{c}) = \min(\pi(w_{1}, ..., w_{m-1}, w_{m}^{*} = w^{c}), \\ \pi(w_{m}^{*} = w^{c}, w_{m+1}, ..., w_{n}))$$

Q is easy to compute by a **forward** and a **backward** language model, and $\pi(w_1, \dots, w_{m-1}, w^c, w_{m+1}, \dots, w_n)$ is no greater than Q After pre-selection, we compute the conditional probability of selected words by $g_{\text{replace}}(\mathbf{x}'|\mathbf{x}) = \pi(w_m^* = w^c|\mathbf{x}_{-m}) = \frac{\pi(w_1, \dots, w_{m-1}, w^c, w_{m+1}, \dots, w_n)}{\sum_{w \in \mathcal{V}} \pi(w_1, \dots, w_{m-1}, w, w_{m+1}, \dots, w_n)}$ Finally, sample a word for replacement

Insertion

First insert a special token, placeholder <PHD>

Then use $g_{replace}(.)$ to sample a real word to replace the placeholder

$$g_{\text{replace}}(\mathbf{x}'|\mathbf{x}) = \pi(w_m^* = w^c | \mathbf{x}_{-m}) = \frac{\pi(w_1, \cdots, w_{m-1}, w^c, w_{m+1}, \cdots, w_n)}{\sum_{w \in \mathcal{V}} \pi(w_1, \cdots, w_{m-1}, w, w_{m+1}, \cdots, w_n)}$$

Hence, $g_{insert}(.)$ is similar to $g_{replace}(.)$

deletion

Suppose

$$\mathbf{x} = [w_1, \cdots, w_{m-1}, w_m, w_{m+1}, \cdots, w_n]$$

we are about to delete the word w_m , then

 $g_{delete}(x'|x_{t-1})$ equals 1 if $x' = [w_1, \dots, w_{m-1}, w_{m+1}, \dots, w_n]$, or 0 for other sentences

Notably, insertion and deletion ensure the **ergodicity** of the Markov chain

stationary distribution

Hard Constraints

$$\pi(\mathbf{x}) \propto p_{\text{LM}}(\mathbf{x}) \cdot \mathcal{X}_{\text{keyword}}(\mathbf{x})$$

- p_{LM} is a general sentence probability computed by a language model,
- *x_{keyword}* is the indicator function showing if the keywords are included in the generated sentence

 $x_{keyword} = 1$ if all constraints are satisfied (keywords appearing in the sentence), or 0 otherwise

stationary distribution

Soft Constraints

$$\pi(\mathbf{x}) \propto p_{\text{LM}}(\mathbf{x}) \cdot \mathcal{X}_{\text{match}}(\mathbf{x}|\mathbf{x}_{*})$$

- $p_{LM}(x)$ is a general sentence probability computed by a language model
- $x_{match}(x|x_*)$ is a matching score

We have several choices for $x_{match}(x|x_*)$

- Keyword matching (KW) as a soft constraint
- Word embedding similarity as a soft constraint
- **Skip-thoughts similarity**(ST) as a soft constraint

Acceptance Rate

$$\begin{aligned} A_{\text{replace}}^{*}(x'|x) &= \frac{p_{\text{replace}} \cdot g_{\text{replace}}(x|x') \cdot \pi(x')}{p_{\text{replace}} \cdot g_{\text{replace}}(x'|x) \cdot \pi(x)} \\ &\approx \frac{\pi(w_m|x_{-m}) \cdot \pi(x')}{\pi(w'_m|x_{-m}) \cdot \pi(x)} = 1 \\ A_{\text{insert}}^{*}(x'|x) &= \frac{p_{\text{delete}} \cdot g_{\text{delete}}(x|x') \cdot \pi(x')}{p_{\text{insert}} \cdot g_{\text{insert}}(x'|x) \cdot \pi(x)} \\ &= \frac{p_{\text{delete}} \cdot \pi(x')}{p_{\text{insert}} \cdot g_{\text{insert}}(x'|x) \cdot \pi(x)} \\ A_{\text{delete}}^{*}(x'|x) &= \frac{p_{\text{insert}} \cdot g_{\text{insert}}(x|x') \cdot \pi(x)}{p_{\text{delete}} \cdot g_{\text{delete}}(x'|x) \cdot \pi(x)} \\ &= \frac{p_{\text{insert}} \cdot g_{\text{insert}}(x|x') \cdot \pi(x')}{p_{\text{delete}} \cdot g_{\text{delete}}(x'|x) \cdot \pi(x)} \end{aligned}$$

1. Initialise
$$x^{0}$$

2. For i = 0 to $N - 1$
 $u \sim U(0, 1)$
 $x^{*} \sim q(x^{*}|x^{(i)})$
if $u < \alpha(x^{*}) = \min\left(1, \frac{\pi(x^{*})q(x|x^{*})}{\pi(x)q(x^{*}|x)}\right)$
 $x^{(i+1)} = x^{*}$
else
 $x^{(i+1)} = x^{(i)}$
http://blog.csdn.net/balanfujin

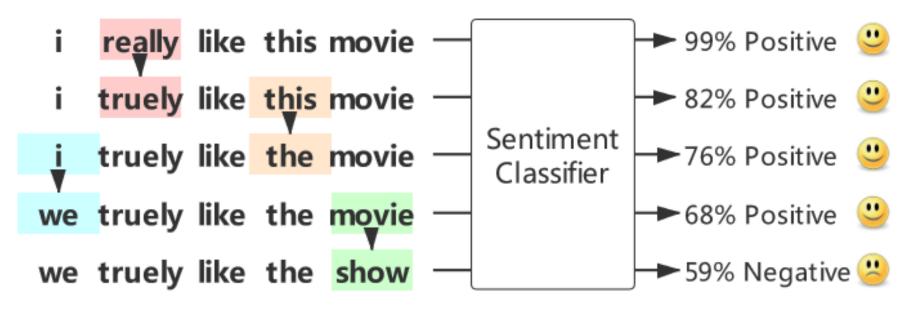
$$g_{\text{replace}}(\mathbf{x}'|\mathbf{x}) = \pi(w_m^* = w^c | \mathbf{x}_{-m}) = \frac{\pi(w_1, \cdots, w_{m-1}, w^c, w_{m+1}, \cdots, w_n)}{\sum_{w \in \mathcal{V}} \pi(w_1, \cdots, w_{m-1}, w, w_{m+1}, \cdots, w_n)}$$

Result

Keyword(s)	Generated Sentences
friends	My good friends were in danger.
project	The first project of the scheme .
have, trip	But many people have never
nave, uip	made the trip .
lottery, scholarships	But the lottery has provided
	scholarships .
decision, build,	The decision is to build a new
home	home .
attempt, copy,	The first attempt to copy the
painting, denounced	painting was denounced .

But, how to apply it to Adversarial Examples

objective



Word change, Output change!!! How to select a substitute word?

[6] ACL19: Generating Fluent Adversarial Examples for Natural Languages

$$g_{\text{replace}}(\mathbf{x}'|\mathbf{x}) = \pi(w_m^* = w^c | \mathbf{x}_{-m}) = \frac{\pi(w_1, \cdots, w_{m-1}, w^c, w_{m+1}, \cdots, w_n)}{\sum_{w \in \mathcal{V}} \pi(w_1, \cdots, w_{m-1}, w, w_{m+1}, \cdots, w_n)}$$

Pre-selection

$$S^{B}(w|x) = LM(w|x_{[1:m-1]}) \cdot LM_{b}(w|x_{[m+1:n]})$$

w-MHA Pre-selection

$$S^{W}(w|x) = S^{B}(w|x) \cdot S(\frac{\partial \tilde{\mathcal{L}}}{\partial e_{m}}, e_{m} - e)$$

- *S* is the cosine similarity function
- $\tilde{L} = L(\tilde{y}|x, C)$ is the loss function on the target label
- e_m and e are the embeddings of the current word (w_m) and the substitute (w).

Result

Cas	e 1
Pre	mise: three men are sitting on a beach dressed in or-
ang	e with refuse carts in front of them.
Hy	pothesis: <i>empty trash cans are sitting on a beach.</i>
	diction: (Contradiction)
Gei	netic: <i>empties</i> trash cans are sitting on a beach.
Pre	diction: (Entailment)
b-N	IHA: the trash cans are sitting in a beach.
Pre	diction: (Entailment)
w-N	IHA: <i>the trash cans are sitting on a beach</i> .
Pre	diction: (Entailment)
Cas	e 2
Pre	mise: a man is holding a microphone in front of his
moi	uth.
Hy	oothesis: a male has a device near his mouth.
	diction: (Entailment)
Gei	netic: a masculine has a device near his mouth.
Pre	diction: (Neutral)
	IHA: a man has a device near his car.
Pro	diction: (Neutral)
110	
	IHA: a man has a device near his home.

Bibliography

Adversarial Examples Theory

- ICLR15: Explaining and harnessing adversarial examples
- ICLR16: Distributional smoothing with virtual adversarial training
- TPAMI18: Virtual Adversarial Training A Regularization Method for Supervised and Semi-Supervised Learning

Adversarial Examples in text

- ICLR17: Adversarial training methods for semi-supervised text classification
- IJCAI18: Interpretable Adversarial Perturbation in Input Embedding Space for Text
- ACL19: Generating Fluent Adversarial Examples for Natural Languages
- ACL19: Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency
- ARXIV19: A survey on Adversarial Attacks and Defenses in Text

Something interesting in Adversarial Examples

- IJCAI19: Improving the Robustness of Deep Neural Networks via Adversarial Training with Triplet Loss
- NIPS19: Adversarial Examples Are Not Bugs, They Are Features
- NIPS19: Learning to Confuse Generating Training Time Adversarial Data with Auto-Encoder